A highly permselective electrochemical glucose sensor using red blood cell membrane

Biosensors and Bioelectronics - Tập 102 - Trang 617-623 - 2018
Insu Kim1, Dohyung Kwon1, Dongtak Lee1, Tae Hoon Lee2, Jeong Hoon Lee2, Gyudo Lee1, Dae Sung Yoon1
1School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
2Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea

Tài liệu tham khảo

Abbott, 2006, Astrocyte-endothelial interactions at the blood-brain barrier, Nat. Rev. Neurosci., 7, 41, 10.1038/nrn1824 Al-Sagur, 2017, A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel, Biosens. Bioelectron., 92, 638, 10.1016/j.bios.2016.10.038 Castellana, 2006, Solid supported lipid bilayers: from biophysical studies to sensor design, Surf. Sci. Rep., 61, 429, 10.1016/j.surfrep.2006.06.001 Centonze, 1994, Electrochemically prepared glucose biosensors: kinetic and faradaic processes involving ascorbic acid and role of the electropolymerized film in preventing electrode-fouling, Fresenius' J. Anal. Chem., 349, 497, 10.1007/BF00323981 Ciriello, 2000, Permselective behavior of an electrosynthesized, nonconducting thin film of Poly(2-naphthol) and its application to enzyme immobilization, Electroanalysis, 12, 825, 10.1002/1521-4109(200007)12:11<825::AID-ELAN825>3.0.CO;2-P Croce, 2012, Theoretical analysis of the performance of glucose sensors with layer-by-layer assembled outer membranes, Sensors, 12, 13402, 10.3390/s121013402 Deamer, 1986, Permeability of lipid bilayers to water and ionic solutes, Chem. Phys. Lipids, 40, 167, 10.1016/0009-3084(86)90069-1 Dehaini, 2017, Erythrocyte–platelet hybrid membrane coating for enhanced nanoparticle functionalization, Adv. Mater., 29 Deng, 2014, Crystal structure of the human glucose transporter GLUT1, Nature, 510, 121, 10.1038/nature13306 Fang, 2013, Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles, Nanoscale, 5, 8884, 10.1039/c3nr03064d Fang, 2015, Engineered nanoparticles mimicking cell membranes for toxin neutralization, Adv. Drug Deliv. Rev., 90, 69, 10.1016/j.addr.2015.04.001 Fender, 2012, Serratia marcescens quinoprotein glucose dehydrogenase activity mediates medium acidification and inhibition of prodigiosin production by glucose, Appl. Environ. Microbiol., 78, 6225, 10.1128/AEM.01778-12 Finkelstein, 1976, Water and nonelectrolyte permeability of lipid bilayer membranes, J. Gen. Physiol., 68, 127, 10.1085/jgp.68.2.127 Flexer, 2008, Extracting kinetic parameters for homogeneous [Os(bpy)(2)ClPyCOOH](+) mediated enzyme reactions from cyclic voltammetry and simulations, Bioelectrochemistry, 74, 201, 10.1016/j.bioelechem.2008.08.001 Gao, 2013, Surface functionalization of gold nanoparticles with red blood cell membranes, Adv. Mater., 25, 3549, 10.1002/adma.201300638 Gopalan, 2016, A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor, Biosens. Bioelectron., 84, 53, 10.1016/j.bios.2015.10.079 Guerrieri, 2009, Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: a critical study, Biosens. Bioelectron., 24, 1550, 10.1016/j.bios.2008.08.004 Guerrieri, 1998, Electrosynthesized non-conducting polymers as permselective membranes in amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/overoxidized polypyrrole bilayer, Biosens. Bioelectron., 13, 103, 10.1016/S0956-5663(97)00064-X Ji, 2011, Formation of mammalian erythrocytes: chromatin condensation and enucleation, Trends Cell Biol., 21, 409, 10.1016/j.tcb.2011.04.003 Jia, 2016, Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors, Biosens. Bioelectron., 76, 80, 10.1016/j.bios.2015.05.037 Kim, 2011, Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells, Biomaterials, 32, 2342, 10.1016/j.biomaterials.2010.11.080 Krebs, 1950, Chemical composition of blood plasma and serum, Annu. Rev. Biochem., 19, 409, 10.1146/annurev.bi.19.070150.002205 Lee, 2012, Real-time quantitative monitoring of specific peptide cleavage by a proteinase for cancer diagnosis, Angew. Chem. Int. Ed., 51, 5837, 10.1002/anie.201108830 Lee, 2012, Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies, Biomed. Microdevices, 14, 375, 10.1007/s10544-011-9614-7 Lee, 2016, A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy, 11, 566 Lee, 2017, Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications, Biomed. Eng. Lett., 1 Li, 2017, Chemiluminescence cloth-based glucose test sensors (CCGTSs): a new class of chemiluminescence glucose sensors, Biosens. Bioelectron., 91, 268, 10.1016/j.bios.2016.12.004 Mingeot-Leclercq, 2008, Atomic force microscopy of supported lipid bilayers, Nat. Protoc., 3, 1654, 10.1038/nprot.2008.149 Orosco, 2009, Real-time monitoring of enzyme activity in a mesoporous silicon double layer, Nat. Nanotechnol., 4, 255, 10.1038/nnano.2009.11 Palmisano, 1993, An interference-free biosensor based on glucose oxidase electrochemically immobilized in a non-conducting poly(pyrrole) film for continuous subcutaneous monitoring of glucose through microdialysis sampling, Biosens. Bioelectron., 8, 393, 10.1016/0956-5663(93)80023-I Palmisano, 1994, An in situ electrosynthesized amperometric biosensor based on lactate oxidase immobilized in a poly-o-phenylenediamine film: determination of lactate in serum by flow injection analysis, Biosens. Bioelectron., 9, 471, 10.1016/0956-5663(94)90009-4 Ribet, 2017, Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring, Biosens. Bioelectron., 90, 577, 10.1016/j.bios.2016.10.007 Schleis, 2007, Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems, Pharmacotherapy, 27, 1313, 10.1592/phco.27.9.1313 Shinwari, 2010, Microfabricated reference electrodes and their biosensing applications, Sensors, 10, 1679, 10.3390/s100301679 Son, 2015, Lipid bilayer control of nascent adhesion formation, Biomed. Eng. Lett., 5, 172, 10.1007/s13534-015-0198-7 Theuer, 2017, Micro-electromechanical affinity sensor for the monitoring of glucose in bioprocess media, Int. J. Mol. Sci., 18, 1235, 10.3390/ijms18061235 Tric, 2017, Optical biosensor optimized for continuous in-line glucose monitoring in animal cell culture, Anal. Bioanal. Chem., 409, 5711, 10.1007/s00216-017-0511-7 Vaidya, 1994, Effect of interference on amperometric glucose biosensors with cellulose acetate membranes, Electroanalysis, 6, 677, 10.1002/elan.1140060811 Venturelli, 2016, Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells, Sci. Rep., 6, 21629, 10.1038/srep21629 Wheeler, 1985, The glucose transporter of mammalian cells, Annu. Rev. Physiol., 47, 503, 10.1146/annurev.ph.47.030185.002443 Yamazaki, 1999, Increased thermal stability of glucose dehydrogenase by cross-linking chemical modification, Biotechnol. Lett., 21, 199, 10.1023/A:1005455911753 Zhang, 1994, Elimination of the acetaminophen interference in an implantable glucose sensor, Anal. Chem., 66, 1183, 10.1021/ac00079a038