Perovskite-loaded plasmonic gold nanorod composites enhanced solar cell performance

Springer Science and Business Media LLC - Tập 6 - Trang 1-11 - 2023
Ming Yuan1, Si Liu1,2,3, Hong Li4, Yifeng Gao1,2, Shui Yu1, Yaming Yu5, Lingyi Meng2, Wen Liu1, Jiaoxia Zhang1, Peng Gao2
1School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
2Laboratory for Advanced Functional Materials, Xiamen Center of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Xiamen, China
3United Auto Battery System Co., Ltd., Liyang, China
4Shandong Hongrui New Material Technology Co., Ltd., Jinan, China
5College of Materials Science and Engineering, Huaqiao University, Xiamen, China

Tóm tắt

As a renewable green energy, solar cells can cope with environmental pollution and the shortage of fossil energy, so they are widely concerned by the scientific community. However, although the perovskite layer has excellent light absorption capacity, its thickness is limited in terms of the morphology and carrier migration. The use of surface plasmon resonance to enhance the performance of solar devices is one of the most promising concepts at present. In this paper, gold nanorods (AuNR) water solution was introduced into perovskite active layer to formed composites and the perovskite solar cells were prepared by one-step spin coating. The results showed that compared with the control group, the maximum short-circuit current density (Jsc) increased from 21.03 mA/cm2 of the control group to 21.6 mA/cm2 with 2vol% AuNR solution, the filling factor (FF) increased from 78.65 to 82%, and the power conversion efficiency (PCE) increased from 18.02 to 19.46%. Plasmon resonance effect enhances light-harvesting ability of perovskite layers. It promotes the separation of excitons, resulting in the formation of more carriers, the inhibition of carrier recombination, and the improvement of quantum efficiency (EQE) and filling factor (FF). Meanwhile, the presence of appropriate moisture promotes the crystallization of the film, enhances the quality of perovskite films and inhibits the carrier recombination.

Tài liệu tham khảo

He B, Xu Y, Zhu J et al (2021) Effects of the doping density of charge-transporting layers on regular and inverted perovskite solar cells: numerical simulations. Adv Compos Hybrid Mater 4(4):1146–1154. https://doi.org/10.1007/s42114-021-00343-9 Chen C, Hu J, Xu Z et al (2021) Natural methionine-passivated MAPbI3 perovskite films for efficient and stable solar devices [J]. Adv Compos Hybrid Mater 4(4):1261–1269. https://doi.org/10.1007/s42114-021-00238-9 Cai Y, Liang L, Gao P (2018) Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin Phys B 27(1):018805. https://doi.org/10.1088/1674-1056/27/1/018805 Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113 Gu H, Liu C, Zhu J et al (2018) Introducing advanced composites and hybrid materials. Adv Compos Hybrid Mater 1(1):1–5. https://doi.org/10.1007/s42114-017-0017-y Xu T, Chen L, Guo Z et al (2016) Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys 18(39):27026–27050. https://doi.org/10.1039/c6cp04553g Pu L, Zhang J, Jiresse NKL et al (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5(1):356–369. https://doi.org/10.1007/s42114-021-00371-5 Metzger JO (2006) Beyond oil and gas: the methanol economy. By George A. Olah, Alain Goeppert, and G. K. Surya Prakash. Angew Chem Int Ed 45(31):5045–5047. https://doi.org/10.1002/anie.200685410 Zhang Z, Zhang J, Li S et al (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338. https://doi.org/10.1016/j.compositesb.2019.107338 Koh TM, Fu K, Fang Y et al (2014) Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J Phys Chem C 118(30):16458–16462. https://doi.org/10.1021/jp411112k Li C, Feng M, Guo F et al (2022) The evolution of tin-based perovskites solar cells. Eng Sci 19:1–4. https://doi.org/10.30919/es8d638 Bade BR, Rondiya SR, Kore KB et al (2021) Room temperature synthesis of formamidinium lead iodide (fapbi3) perovskite for low-cost absorber in solar cells. ES Energy Environ 13:31–36. https://doi.org/10.30919/esee8c463 Yusoff ARBM, Nazeeruddin MK (2016) Organohalide lead perovskites for photovoltaic applications. J Phys Chem Letters 7(5):851–866. https://doi.org/10.1021/acs.jpclett.5b02893 Liu T, Mai X, Chen H et al (2018) Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale 10(9):4194–4201. https://doi.org/10.1039/c7nr09260a Zhang J, Zhang W, Wei L et al (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12):1970035. https://doi.org/10.1002/mame.201970035 Kojima A, Teshima K, Shirai Y et al (2009) Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r Im JH, Lee CR, Lee JW et al (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10):4088–4093. https://doi.org/10.1039/c1nr10867k Pellet N, Gao P, Gregori G et al (2014) Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew Chem Int Ed 53(12):3151–3157. https://doi.org/10.1002/anie.201309361 Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398. https://doi.org/10.1038/nature12509 Yao X, Ding Y, Zhang X et al (2015) A review of the perovskite solar cells. Acta Phys Sin 64(3):038805. https://doi.org/10.7498/aps.64.038805 Zhou H, Chen Q, Li G et al (2014) Interface engineering of highly efficient perovskite solar cells. Science 345(6196):542–546. https://doi.org/10.1126/science.1254050 Yang Woon S, Noh Jun H, Jeon Nam J et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237. https://doi.org/10.1126/science.aaa9272 Li X, Bi D, Yi C et al (2016) A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294):58–62. https://doi.org/10.1126/science.aaf8060 Yang Woon S, Park B-W, Jung Eui H et al (2017) Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345):1376–1379. https://doi.org/10.1126/science.aan2301 Seok SI, Grätzel M, Park N-G (2018) Methodologies toward highly efficient perovskite solar cells. Small 14(20):1704177. https://doi.org/10.1002/smll.201704177 Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3(8):682–689. https://doi.org/10.1038/s41560-018-0200-6 Ibn-Mohammed T, Koh SCL, Reaney IM et al (2017) Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew Sustain Energy Rev 80:1321–1344. https://doi.org/10.1016/j.rser.2017.05.095 Gao Y, Zhang J, Zhang Z et al (2021) Plasmon-Enhanced perovskite solar cells with efficiency beyond 21 %: the asynchronous synergistic effect of water and gold Nanorods. ChemPlusChem 86(2):291–297. https://doi.org/10.1002/cplu.202000792 Chen H, Luo Q, Liu T et al (2020) Boosting multiple interfaces by Co-Doped graphene quantum dots for high efficiency and durability perovskite solar cells. ACS Appl Mater Interfaces 12(12):13941–13949. https://doi.org/10.1021/acsami.9b23255 Andrianov AV, Aleshin AN (2020) Terahertz Absorption in composite films based on organometallic perovskite and mixed cellulose ester [J]. Tech Phys Lett 46(5):510–513. https://doi.org/10.1134/S1063785020050181 Zhao XY, Yan GH, Sun Y et al (2019) Preparation of ethyl cellulose composite film with down conversion luminescence properties by doping perovskite quantum dots. ChemistrySelect 4(21):6516–6523. https://doi.org/10.1002/slct.201900822 Isaev NK, Aleshin AN (2021) Photoelectric properties of composite films based on organometallic perovskite ch3nh3pbbr3 modified with mixed cellulose ester. Phys Solid State 63(1):160–164. https://doi.org/10.1134/S1063783421010121 Xia PF, Lu Y, Li YZ et al (2020) Solution-processed quasi-two-dimensional/nanoscrystals perovskite composite film enhances the efficiency and stability of perovskite light-emitting diodes. ACS Appl Mater Interfaces 12(35):39720–39729. https://doi.org/10.1021/acsami.0c07547 Jung JW, Son SH, Choi J (2021) Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cells. Polymers. https://doi.org/10.3390/polym13081281 Que M, Zhu L, Yang Y et al (2018) Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells. J Power Sources 383:42–49. https://doi.org/10.1016/j.jpowsour.2018.02.050 John PI, Wang SG (2013) Plasma sciences and the creation of wealth. Science Press, 28–42 Wang J (2014) A review of recent progress in plasmon-assisted nanophotonic devices. Front Optoelectron 7(3):320–337. https://doi.org/10.1007/s12200-014-0469-4 Thrithamarassery Gangadharan D, Xu Z, Liu Y et al (2017) Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6(1):153–175. https://doi.org/10.1515/nanoph-2016-0111 Chan K, Wright M, Elumalai N et al (2017) Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv Opt Mater 5(6):1600698. https://doi.org/10.1002/adom.201600698 Liu S, Liang L, Meng L et al (2020) Synergy of plasmonic silver nanorod and water for enhanced planar perovskite photovoltaic devices. Solar RRL 4(2):1900231. https://doi.org/10.1002/solr.201900231 Zhang J, Gao Y, Jiao Y et al (2020) The Graphene/Fe(3)O(4) Nanocomposites as electrode materials of supercapacitors. J Nanosci Nanotechnol 20(5):3164–3173. https://doi.org/10.1166/jnn.2020.17391 Li Y, Kan C, Wang C et al (2014) Surface plasmon resonance coupling effect of assembled gold nanorods based on the FDTD simulation. Acta Phys-Chim Sin 30(10):1827–1836. https://doi.org/10.3866/pku.Whxb201408011 Luo Q, Ma H, Hou Q et al (2018) Perovskite solar cells: all-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28(11):1870069. https://doi.org/10.1002/adfm.201870069 Jiang J, Xu J, Walter H et al (2020) The Doping of alkali metal for halide perovskites. ES Mater Manuf 7:25–33. https://doi.org/10.30919/esmm5f705 Wang JJ, Hu QK, Li MZ et al (2020) Poly(3-hexylthiophene)/Gold nanorod composites as efficient hole-transporting materials for perovskite solar cells. Solar RRL. https://doi.org/10.1002/solr.202000109 Tonui P, Arbab EAA, Mola GT (2019) Metal nano-composite as charge transport co-buffer layer in perovskite based solar cell. J Phys Chem Solids 126:124–130. https://doi.org/10.1016/j.jpcs.2018.09.019 Xia ZT, Zhang CX, Feng ZY et al (2020) Synergetic effect of plasmonic gold nanorods and MgO for perovskite solar cells. Nanomaterials. https://doi.org/10.3390/nano10091830 Zhu T, Shen LN, Xun SN et al (2022) High-performance ternary perovskite-organic solar cells. Adv Mater. https://doi.org/10.1002/adma.202109348 Luo Q, Ma H, Hao F et al (2017) Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Func Mater 27(42):1703068. https://doi.org/10.1002/adfm.201703068 Deng WQ, Yuan ZT, Liu SH et al (2019) Plasmonic enhancement for high-efficiency planar heterojunction perovskite solar cells. J Power Sources 432:112–118. https://doi.org/10.1016/j.jpowsour.2019.05.067 Tian X-D, Lin Y, Dong J-C et al (2017) Synthesis of Ag nanorods with highly tunable plasmonics toward optimal surface-enhanced raman scattering substrates self-assembled at interfaces. Adv Opt Mater 5(21):1700581. https://doi.org/10.1002/adom.201700581 Gong J, Darling SB, You F (2015) Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts [J]. Energy Environ Sci 8(7):1953–1968. https://doi.org/10.1039/C5EE00615E Zhang W, Xiong J, Li J et al (2019) Mechanism of water effect on enhancing the photovoltaic performance of triple-cation hybrid perovskite solar cells. ACS Appl Mater Interfaces 11(13):12699–12708. https://doi.org/10.1021/acsami.8b20264 Gong X, Li M, Shi X-B et al (2015) Controllable Perovskite crystallization by water additive for high-performance solar cells. Adv Func Mater 25(42):6671–6678. https://doi.org/10.1002/adfm.201503559 Chiang C-H, Nazeeruddin MK, Grätzel M et al (2017) The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci 10(3):808–817. https://doi.org/10.1039/C6EE03586H Meng G, Shi Y, Wang X et al (2018) New insight into the ultra-long lifetime of excitons in organic–inorganic perovskite: Reverse intersystem crossing. J Energy Chem 27(5):1496–1500. https://doi.org/10.1016/j.jechem.2017.10.018 Zhang R, Zhou Y, Peng L et al (2016) Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures. Sci Rep 6(1):25036. https://doi.org/10.1038/srep25036 Xu X, Du Q, Peng B et al (2014) Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods. Appl Phys Lett 105(11):113306. https://doi.org/10.1063/1.4896516 Turren-Cruz S-H, Saliba M, Mayer MT et al (2018) Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci 11(1):78–86. https://doi.org/10.1039/C7EE02901B Wang C, Gao Y, Qiu Z-L et al (2022) D6h Symmetric radical donor-acceptor nanographene modulated interfacial carrier transfer for high-performance perovskite solar cells. CCS Chemistry 1–38. https://doi.org/10.31635/ccschem.022.202202433 Zhang Z, Geng S, Zhang J et al (2022) Atomic permutation toward new Ruddlesden-Popper Two-dimensional perovskite with the smallest interlayer spacing. J Phys Chem C 126(19):8268–8277. https://doi.org/10.1021/acs.jpcc.2c02641