Repercussion of pressure on thermodynamic, optoelectronic, thermoelectric and magneto-elastic rectitude of cubic LaFeO3: Quantum DFT perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437
Faridi, 2018, Pressure induced band-gap tuning in KNbO3 for piezoelectric applications: quantum DFT-GGA approach, Chin. J. Phys., 56, 1481, 10.1016/j.cjph.2018.06.003
Tariq, 2019, Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z= Ba and Sr) under pressure, Chin. Phys. B, 28, 10.1088/1674-1056/28/6/066101
Leontiou, 2003, Catalytic NO reduction with CO on La1− xSrx (Fe3+/Fe4+) O3±δ perovskite-type mixed oxides (x= 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90), Appl. Catal. Gen., 241, 133, 10.1016/S0926-860X(02)00457-X
Nadeem, 2016, DFT study of structural, electronic, thermo-elastic properties and plausible origin of superconductivity due to quantum degenerate states in LaTiO3, J. Theor. Comput. Chem., 15, 1650044, 10.1142/S0219633616500449
Nazir, 2015, Putting DFT to the trial: first principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3, Comput. Condens. Matter, 4, 32, 10.1016/j.cocom.2015.07.002
Tariq, 2018, Exploring structural, electronic and thermo-elastic properties of metallic AMoO 3 (A= Pb, Ba, Sr) molybdates, Appl. Phys. A, 124, 44, 10.1007/s00339-017-1452-x
Gilani, 2018, Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO3 by using GGA and mBJ approach, Chin. J. Phys., 56, 308, 10.1016/j.cjph.2018.01.002
Nazir, 2018, Under pressure DFT investigations on optical and electronic properties of PbZrO 3, Acta Phys. Pol., A, 133, 10.12693/APhysPolA.133.105
Tariq, 2019, Enlightening the stable ferromagnetic phase of SrAO3 (A= Cr, Fe and Co) compounds using spin polarized quantum mechanical approach, Chin. J. Phys., 63, 84, 10.1016/j.cjph.2019.10.018
Iqbal, 2019, Enhanced anharmonic phonon coupling and decay dominated by low-energy phonons in CdS nanowires, J. Raman Spectrosc., 50, 1492, 10.1002/jrs.5664
Ullah, 2018, Imaging the scattering field of a single GaN nanowire, J. Optic., 20, 105608
Shen, 2015, Theoretical investigation of magnetic, electronic and optical properties of orthorhombic YFeO3: a first-principle study, Mater. Sci. Semicond. Process., 34, 114, 10.1016/j.mssp.2015.02.015
Zhou, 2019, Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation, Adv. Energy Mater., 9, 1900664, 10.1002/aenm.201900664
Zhou, 2019, vol. 429, 120
Zhou, 2019, vol. 191, 33
Zeng, 2017, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer, J. Mater. Chem., 5, 17499, 10.1039/C7TA00203C
Liu, 2012, A novel doped CeO2–LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells, Int. J. Hydrogen Energy, 37, 12574, 10.1016/j.ijhydene.2012.06.064
Song, 2010, Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton, Sensor. Actuator. B Chem., 147, 248, 10.1016/j.snb.2010.03.006
Parida, 2010, Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition, Int. J. Hydrogen Energy, 35, 12161, 10.1016/j.ijhydene.2010.08.029
Xu, 2001, Pressure-induced breakdown of a correlated system: the progressive collapse of the Mott-Hubbard state in R FeO 3, Phys. Rev. B, 64, 10.1103/PhysRevB.64.094411
Tariq, 2018, Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO 3, Eur. Phys. J. Plus, 133, 87, 10.1140/epjp/i2018-11908-1
Blaha, 2001
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007
Goldschmidt, 1926, Laws Cryst. Chem., 14, 477
Karki, 1997, Elastic instabilities in crystals from ab initio stress-strain relations, 9, 8579
Cousins, 1982, Internal strain in diamond structure elements: a survey of theoretical approaches, J. Phys. C Solid State Phys., 15, 1857, 10.1088/0022-3719/15/9/009
Souvatzis, 2004, First-principles prediction of superplastic transition-metal alloys, Phys. Rev. B, 70, 10.1103/PhysRevB.70.012201
Tian, 2012, Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Metals Hard Mater., 33, 93, 10.1016/j.ijrmhm.2012.02.021
Fox, 2002, 2
Mubarak, 2016, The first-principle study of the electronic, optical and thermoelectric properties of XTiO 3 (X= Ca, Sr and Ba) compounds, Int. J. Mod. Phys. B, 30, 1650141, 10.1142/S0217979216501411
Mubarak, 2016, The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds, Int. J. Mod. Phys. B, 30, 1650141, 10.1142/S0217979216501411
Moulder, 1992