Repercussion of pressure on thermodynamic, optoelectronic, thermoelectric and magneto-elastic rectitude of cubic LaFeO3: Quantum DFT perspective

Journal of Alloys and Compounds - Tập 831 - Trang 154600 - 2020
Saad Tariq1, A. A. Mubarak2, Farida Hamioud3, M. Musa Saad H.‐E.4, Sarwat Zahra5, Bushra Kanwal6, Qadeer Afzal6
1Department of Physics, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
2Physics Department Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
3Nottingham college, Science faculty, United Kingdom
4Department of Physics, College of Science, Qassim University, Buridah, Saudi Arabia
5Department of Physics, University of Education, Lahore, Pakistan
6Centre for High Energy Physics, University of the Punjab, Lahore, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tariq, 2015, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study, AIP Adv., 5, 10.1063/1.4926437

Faridi, 2018, Pressure induced band-gap tuning in KNbO3 for piezoelectric applications: quantum DFT-GGA approach, Chin. J. Phys., 56, 1481, 10.1016/j.cjph.2018.06.003

Tariq, 2019, Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z= Ba and Sr) under pressure, Chin. Phys. B, 28, 10.1088/1674-1056/28/6/066101

Leontiou, 2003, Catalytic NO reduction with CO on La1− xSrx (Fe3+/Fe4+) O3±δ perovskite-type mixed oxides (x= 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90), Appl. Catal. Gen., 241, 133, 10.1016/S0926-860X(02)00457-X

Nadeem, 2016, DFT study of structural, electronic, thermo-elastic properties and plausible origin of superconductivity due to quantum degenerate states in LaTiO3, J. Theor. Comput. Chem., 15, 1650044, 10.1142/S0219633616500449

Nazir, 2015, Putting DFT to the trial: first principles pressure dependent analysis on optical properties of cubic perovskite SrZrO3, Comput. Condens. Matter, 4, 32, 10.1016/j.cocom.2015.07.002

Tariq, 2018, Exploring structural, electronic and thermo-elastic properties of metallic AMoO 3 (A= Pb, Ba, Sr) molybdates, Appl. Phys. A, 124, 44, 10.1007/s00339-017-1452-x

Gilani, 2018, Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO3 by using GGA and mBJ approach, Chin. J. Phys., 56, 308, 10.1016/j.cjph.2018.01.002

Nazir, 2018, Under pressure DFT investigations on optical and electronic properties of PbZrO 3, Acta Phys. Pol., A, 133, 10.12693/APhysPolA.133.105

Tariq, 2019, Enlightening the stable ferromagnetic phase of SrAO3 (A= Cr, Fe and Co) compounds using spin polarized quantum mechanical approach, Chin. J. Phys., 63, 84, 10.1016/j.cjph.2019.10.018

Iqbal, 2019, Enhanced anharmonic phonon coupling and decay dominated by low-energy phonons in CdS nanowires, J. Raman Spectrosc., 50, 1492, 10.1002/jrs.5664

Ullah, 2018, Imaging the scattering field of a single GaN nanowire, J. Optic., 20, 105608

Shen, 2015, Theoretical investigation of magnetic, electronic and optical properties of orthorhombic YFeO3: a first-principle study, Mater. Sci. Semicond. Process., 34, 114, 10.1016/j.mssp.2015.02.015

Zhou, 2019, Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation, Adv. Energy Mater., 9, 1900664, 10.1002/aenm.201900664

Zhou, 2019, vol. 429, 120

Zhou, 2019, vol. 191, 33

Zeng, 2017, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer, J. Mater. Chem., 5, 17499, 10.1039/C7TA00203C

Liu, 2012, A novel doped CeO2–LaFeO3 composite oxide as both anode and cathode for solid oxide fuel cells, Int. J. Hydrogen Energy, 37, 12574, 10.1016/j.ijhydene.2012.06.064

Song, 2010, Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton, Sensor. Actuator. B Chem., 147, 248, 10.1016/j.snb.2010.03.006

Parida, 2010, Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition, Int. J. Hydrogen Energy, 35, 12161, 10.1016/j.ijhydene.2010.08.029

Xu, 2001, Pressure-induced breakdown of a correlated system: the progressive collapse of the Mott-Hubbard state in R FeO 3, Phys. Rev. B, 64, 10.1103/PhysRevB.64.094411

Tariq, 2018, Ab initio study on half-metallic, electronic and thermodynamic attributes of LaFeO 3, Eur. Phys. J. Plus, 133, 87, 10.1140/epjp/i2018-11908-1

Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

Blaha, 2001

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Murnaghan, 1944, Proc. Natl. Acad. Sci. U.S.A., 30, 244, 10.1073/pnas.30.9.244

Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007

Goldschmidt, 1926, Laws Cryst. Chem., 14, 477

Karki, 1997, Elastic instabilities in crystals from ab initio stress-strain relations, 9, 8579

Cousins, 1982, Internal strain in diamond structure elements: a survey of theoretical approaches, J. Phys. C Solid State Phys., 15, 1857, 10.1088/0022-3719/15/9/009

Souvatzis, 2004, First-principles prediction of superplastic transition-metal alloys, Phys. Rev. B, 70, 10.1103/PhysRevB.70.012201

Tian, 2012, Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Metals Hard Mater., 33, 93, 10.1016/j.ijrmhm.2012.02.021

Fox, 2002, 2

Mubarak, 2016, The first-principle study of the electronic, optical and thermoelectric properties of XTiO 3 (X= Ca, Sr and Ba) compounds, Int. J. Mod. Phys. B, 30, 1650141, 10.1142/S0217979216501411

Mubarak, 2016, The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds, Int. J. Mod. Phys. B, 30, 1650141, 10.1142/S0217979216501411

Moulder, 1992