Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics
Tài liệu tham khảo
Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nano., 9, 687, 10.1038/nnano.2014.149
Deschler, 2014, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, J. Phys. Chem. Lett., 5, 1421, 10.1021/jz5005285
National Renewable Energy Laboratory. (2016). Best Research-Cell Efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Ball, 2013, Low-temperature processed mesosuperstructured to thin-film perovskite solar cells, Energ. Environ. Sci., 6, 1739, 10.1039/c3ee40810h
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Snaith, 2013, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett., 4, 3623, 10.1021/jz4020162
Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340
Wojciechowski, 2015, C60 as an efficient n-type compact layer in perovskite solar cells, J. Phys. Chem. Lett., 6, 2399, 10.1021/acs.jpclett.5b00902
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Malinkiewicz, 2014, Perovskite solar cells employing organic charge-transport layers, Nat. Photon., 8, 128, 10.1038/nphoton.2013.341
Noel, 2017, A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films, Energ. Environ. Sci., 10, 145, 10.1039/C6EE02373H
Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014
Correa Baena, 2015, Highly efficient planar perovskite solar cells through band alignment engineering, Energ. Environ. Sci., 8, 2928, 10.1039/C5EE02608C
Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energ. Environ. Sci., 9, 1989, 10.1039/C5EE03874J
Wang, 2016, Efficient perovskite solar cells by metal ion doping, Energ. Environ. Sci., 9, 2892, 10.1039/C6EE01969B
Klug, 2017, Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties, Energ. Environ. Sci., 10, 236, 10.1039/C6EE03201J
Eperon, 2015, Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A, 3, 19688, 10.1039/C5TA06398A
Zhang, 2015, Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells, Nat. Commun., 6, 10030, 10.1038/ncomms10030
Heo, 2015, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate, Adv. Mater., 27, 3424, 10.1002/adma.201500048
Wang, 2015, HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells, Adv. Funct. Mater., 25, 1120, 10.1002/adfm.201404007
Seo, 2016, Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency, Adv. Energy Mater., 6, 1600767, 10.1002/aenm.201600767
Xu, 2015, Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes, Nat. Commun., 6, 7081, 10.1038/ncomms8081
Gong, 2015, Controllable perovskite crystallization by water additive for high-performance solar cells, Adv. Funct. Mater., 25, 6671, 10.1002/adfm.201503559
Eperon, 2014, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energ. Environ. Sci., 7, 982, 10.1039/c3ee43822h
McMeekin, 2017, Crystallization kinetics and morphology control of mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution, Adv. Mater., 29, 1607039, 10.1002/adma.201607039
Heo, 2015, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energ. Environ. Sci., 8, 1602, 10.1039/C5EE00120J
Soe, 2016, Room temperature phase transition in methylammonium lead iodide perovskite thin films induced by hydrohalic acid additives, ChemSusChem, 9, 2656, 10.1002/cssc.201600879
Liu, 2003, Hydrolysis of N,N-dimethylformamide catalyzed by the Keggin H3[PMo12O40]: isolation and crystal structure analysis of [(CH3)2NH2]3[PMo12O40], J. Mol. Struct., 654, 215, 10.1016/S0022-2860(03)00225-4
Cottineau, 2011, Hydrolysis and complexation of N,N-dimethylformamide in new nanostructurated titanium oxide hybrid organic–inorganic sols and gel, J. Phys. Chem. C, 115, 12269, 10.1021/jp201864g
Brown, 1992, Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis, Acc. Chem. Res., 25, 481, 10.1021/ar00023a001
Long, 2001
Nayak, 2016, Mechanism for rapid growth of organic–inorganic halide perovskite crystals, Nat. Commun., 7, 13303, 10.1038/ncomms13303
Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557
Zhang, 1996, Spectrophotometric pH measurements of surface seawater at in-situ conditions: absorbance and protonation behavior of thymol blue, Mar. Chem., 52, 17, 10.1016/0304-4203(95)00076-3
Cox, 2013, Acids and bases. Solvent effects on acid–base strength. By Brian G. Cox, Angew. Chem. Int. Ed., 52, 7638, 10.1002/anie.201304650
Marsella, 2000, Dimethylformamide
Yan, 2015, Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency, J. Am. Chem. Soc., 137, 4460, 10.1021/jacs.5b00321
Zhou, 2015, Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells, Angew. Chem. Int. Ed., 54, 9705, 10.1002/anie.201504379
Anaraki, 2016, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energ. Environ. Sci., 9, 3128, 10.1039/C6EE02390H
Tsai, 2017, Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells, Adv. Energy Mater., 7, 10.1002/aenm.201602159
Nie, 2015, Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 10.1126/science.aaa0472
Tsai, 2016, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306
