Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics

Joule - Tập 1 - Trang 328-343 - 2017
Nakita K. Noel1, Martina Congiu1,2, Alexandra J. Ramadan1, Sarah Fearn3, David P. McMeekin1, Jay B. Patel1, Michael B. Johnston1, Bernard Wenger1, Henry J. Snaith1
1Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
2Centre for Nanoscience and Technology, Italian Institute of Technology, via Giovanni Pascoli 70/3, Milano 20133, Italy
3Department of Materials, Imperial College London, London SW7 2AZ, UK

Tài liệu tham khảo

Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nano., 9, 687, 10.1038/nnano.2014.149 Deschler, 2014, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors, J. Phys. Chem. Lett., 5, 1421, 10.1021/jz5005285 National Renewable Energy Laboratory. (2016). Best Research-Cell Efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591 Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604 Ball, 2013, Low-temperature processed mesosuperstructured to thin-film perovskite solar cells, Energ. Environ. Sci., 6, 1739, 10.1039/c3ee40810h Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982 Snaith, 2013, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett., 4, 3623, 10.1021/jz4020162 Burschka, 2013, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316, 10.1038/nature12340 Wojciechowski, 2015, C60 as an efficient n-type compact layer in perovskite solar cells, J. Phys. Chem. Lett., 6, 2399, 10.1021/acs.jpclett.5b00902 Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509 Malinkiewicz, 2014, Perovskite solar cells employing organic charge-transport layers, Nat. Photon., 8, 128, 10.1038/nphoton.2013.341 Noel, 2017, A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films, Energ. Environ. Sci., 10, 145, 10.1039/C6EE02373H Jeon, 2014, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat. Mater., 13, 897, 10.1038/nmat4014 Correa Baena, 2015, Highly efficient planar perovskite solar cells through band alignment engineering, Energ. Environ. Sci., 8, 2928, 10.1039/C5EE02608C Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energ. Environ. Sci., 9, 1989, 10.1039/C5EE03874J Wang, 2016, Efficient perovskite solar cells by metal ion doping, Energ. Environ. Sci., 9, 2892, 10.1039/C6EE01969B Klug, 2017, Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties, Energ. Environ. Sci., 10, 236, 10.1039/C6EE03201J Eperon, 2015, Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A, 3, 19688, 10.1039/C5TA06398A Zhang, 2015, Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells, Nat. Commun., 6, 10030, 10.1038/ncomms10030 Heo, 2015, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate, Adv. Mater., 27, 3424, 10.1002/adma.201500048 Wang, 2015, HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells, Adv. Funct. Mater., 25, 1120, 10.1002/adfm.201404007 Seo, 2016, Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency, Adv. Energy Mater., 6, 1600767, 10.1002/aenm.201600767 Xu, 2015, Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes, Nat. Commun., 6, 7081, 10.1038/ncomms8081 Gong, 2015, Controllable perovskite crystallization by water additive for high-performance solar cells, Adv. Funct. Mater., 25, 6671, 10.1002/adfm.201503559 Eperon, 2014, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energ. Environ. Sci., 7, 982, 10.1039/c3ee43822h McMeekin, 2017, Crystallization kinetics and morphology control of mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution, Adv. Mater., 29, 1607039, 10.1002/adma.201607039 Heo, 2015, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency, Energ. Environ. Sci., 8, 1602, 10.1039/C5EE00120J Soe, 2016, Room temperature phase transition in methylammonium lead iodide perovskite thin films induced by hydrohalic acid additives, ChemSusChem, 9, 2656, 10.1002/cssc.201600879 Liu, 2003, Hydrolysis of N,N-dimethylformamide catalyzed by the Keggin H3[PMo12O40]: isolation and crystal structure analysis of [(CH3)2NH2]3[PMo12O40], J. Mol. Struct., 654, 215, 10.1016/S0022-2860(03)00225-4 Cottineau, 2011, Hydrolysis and complexation of N,N-dimethylformamide in new nanostructurated titanium oxide hybrid organic–inorganic sols and gel, J. Phys. Chem. C, 115, 12269, 10.1021/jp201864g Brown, 1992, Recent perspectives concerning the mechanism of H3O+- and hydroxide-promoted amide hydrolysis, Acc. Chem. Res., 25, 481, 10.1021/ar00023a001 Long, 2001 Nayak, 2016, Mechanism for rapid growth of organic–inorganic halide perovskite crystals, Nat. Commun., 7, 13303, 10.1038/ncomms13303 Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557 Zhang, 1996, Spectrophotometric pH measurements of surface seawater at in-situ conditions: absorbance and protonation behavior of thymol blue, Mar. Chem., 52, 17, 10.1016/0304-4203(95)00076-3 Cox, 2013, Acids and bases. Solvent effects on acid–base strength. By Brian G. Cox, Angew. Chem. Int. Ed., 52, 7638, 10.1002/anie.201304650 Marsella, 2000, Dimethylformamide Yan, 2015, Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency, J. Am. Chem. Soc., 137, 4460, 10.1021/jacs.5b00321 Zhou, 2015, Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells, Angew. Chem. Int. Ed., 54, 9705, 10.1002/anie.201504379 Anaraki, 2016, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energ. Environ. Sci., 9, 3128, 10.1039/C6EE02390H Tsai, 2017, Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells, Adv. Energy Mater., 7, 10.1002/aenm.201602159 Nie, 2015, Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 10.1126/science.aaa0472 Tsai, 2016, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306