Structural and material performance of geopolymer concrete: A review
Tài liệu tham khảo
Singh, 2015, Geopolymer concrete: a review of some recent developments, Constr. Build. Mater., 85, 78, 10.1016/j.conbuildmat.2015.03.036
Duxson, 2007, Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917, 10.1007/s10853-006-0637-z
Palomo, 1999, Alkali-activated fly ashes: a cement for the future, Cem. Concr. Res., 29, 1323, 10.1016/S0008-8846(98)00243-9
Davidovits, 1991, Geopolymers: inorganic polymeric new materials, J. Thermal Anal. Calorimetry, 37, 1633, 10.1007/BF01912193
Komnitsas, 2011, Potential of geopolymer technology towards green buildings and sustainable cities, Procedia Eng., 21, 1023, 10.1016/j.proeng.2011.11.2108
Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35, 1688, 10.1016/j.cemconres.2004.10.042
Somna, 2011, NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel, 90, 2118, 10.1016/j.fuel.2011.01.018
Kumar, 2010, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J. Mater. Sci., 45, 607, 10.1007/s10853-009-3934-5
Chindaprasirt, 2012, Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems, J. Mater. Sci., 47, 4876, 10.1007/s10853-012-6353-y
Guo, 2010, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos., 32, 142, 10.1016/j.cemconcomp.2009.11.003
van Jaarsveld, 1999, Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Ind. Eng. Chem. Res., 38, 3932, 10.1021/ie980804b
Xu, 2002, Geopolymerisation of multiple minerals, Miner. Eng., 15, 1131, 10.1016/S0892-6875(02)00255-8
Zhang, 2009, Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate, J. Mater. Sci., 44, 4668, 10.1007/s10853-009-3715-1
Ishwarya, 2013
De Silva, 2007, Kinetics of geopolymerization: role of Al 2 O 3 and SiO 2, Cem. Concr. Res., 37, 512, 10.1016/j.cemconres.2007.01.003
De Vargas, 2011, The effects of Na 2 O/SiO 2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cem. Concr. Compos., 33, 653, 10.1016/j.cemconcomp.2011.03.006
Kusbiantoro, 2013, Development of sucrose and citric acid as the natural based admixture for fly ash based geopolymer, Procedia Environ. Sci., 17, 596, 10.1016/j.proenv.2013.02.075
Nematollahi, 2014, Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer, Mater. Des., 57, 667, 10.1016/j.matdes.2014.01.064
Jang, 2014, Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Constr. Build. Mater., 50, 169, 10.1016/j.conbuildmat.2013.09.048
Mehta, 2017, Sulfuric acid resistance of fly ash based geopolymer concrete, Constr. Build. Mater., 146, 136, 10.1016/j.conbuildmat.2017.04.077
Pouhet, 2016, Formulation and performance of flash metakaolin geopolymer concretes, Constr. Build. Mater., 120, 150, 10.1016/j.conbuildmat.2016.05.061
Ramujee, 2017, Mechanical properties of geopolymer concrete composites, Mater. Today:. Proc., 4, 2937, 10.1016/j.matpr.2017.02.175
Naskar, 2016, Effect of nano materials in geopolymer concrete, Perspect. Sci., 8, 273, 10.1016/j.pisc.2016.04.049
Albitar, 2017, Durability evaluation of geopolymer and conventional concretes, Constr. Build. Mater., 136, 374, 10.1016/j.conbuildmat.2017.01.056
Okoye, 2017, Durability of fly ash based geopolymer concrete in the presence of silica fume, J. Cleaner Prod., 149, 1062, 10.1016/j.jclepro.2017.02.176
Kabir, 2017, Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete, J. Cleaner Prod., 161, 471, 10.1016/j.jclepro.2017.05.002
Islam, 2017, Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete, Constr. Build. Mater., 152, 964, 10.1016/j.conbuildmat.2017.06.092
Sathanandam, 2017, Low carbon building: experimental insight on the use of fly ash and glass fibre for making geopolymer concrete, Sustain. Environ. Res., 27, 146, 10.1016/j.serj.2017.03.005
Mehta, 2017, Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash, Constr. Build. Mater., 150, 792, 10.1016/j.conbuildmat.2017.06.067
Pasupathy, 2017, Durability of low calcium fly ash based geopolymer concrete culvert in saline environment, Cem. Concr. Res., 100, 297, 10.1016/j.cemconres.2017.07.010
Karthik, 2017, Durability study on Coal Fly Ash-Blast Furnace Slag geopolymer concretes with Bio-additives, Ceram. Int., 10.1016/j.ceramint.2017.06.042
Nath, 2017, Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Constr. Build. Mater., 130, 22, 10.1016/j.conbuildmat.2016.11.034
Tanyildizi, 2016, Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature, Constr. Build. Mater., 126, 381, 10.1016/j.conbuildmat.2016.09.001
Al-Majidi, 2017, Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties, Constr. Build. Mater., 139, 286, 10.1016/j.conbuildmat.2017.02.045
Karakoç, 2016, Sulfate resistance of ferrochrome slag based geopolymer concrete, Ceram. Int., 42, 1254, 10.1016/j.ceramint.2015.09.058
Nuaklong, 2016, Influence of recycled aggregate on fly ash geopolymer concrete properties, J. Cleaner Prod., 112, 2300, 10.1016/j.jclepro.2015.10.109
Wongsa, 2016, Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates, Constr. Build. Mater., 111, 637, 10.1016/j.conbuildmat.2016.02.135
Paiva, 2017, Development and incorporation of lightweight waste-based geopolymer aggregates in mortar and concrete, Constr. Build. Mater., 131, 784, 10.1016/j.conbuildmat.2016.11.017
Shaikh, 2016, Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates, Int. J. Sustain. Built Environ., 5, 277, 10.1016/j.ijsbe.2016.05.009
Wardhono, 2017, Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes, Constr. Build. Mater., 143, 272, 10.1016/j.conbuildmat.2017.03.153
Shehab, 2016, Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement, Constr. Build. Mater., 126, 560, 10.1016/j.conbuildmat.2016.09.059
Aliabdo, 2016, Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance, Constr. Build. Mater., 123, 581, 10.1016/j.conbuildmat.2016.07.043
Singh, 2016, Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete, Constr. Build. Mater., 118, 171, 10.1016/j.conbuildmat.2016.05.008
Khan, 2016, Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete, Cem. Concr. Res., 89, 220, 10.1016/j.cemconres.2016.09.001
Okoye, 2015, Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete, Constr. Build. Mater., 98, 685, 10.1016/j.conbuildmat.2015.08.009
Ganesan, 2015, Durability characteristics of steel fibre reinforced geopolymer concrete, Constr. Build. Mater., 93, 471, 10.1016/j.conbuildmat.2015.06.014
Assi, 2016, Investigation of early compressive strength of fly ash-based geopolymer concrete, Constr. Build. Mater., 112, 807, 10.1016/j.conbuildmat.2016.03.008
Noushini, 2016, The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete, Constr. Build. Mater., 112, 464, 10.1016/j.conbuildmat.2016.02.210
Duan, 2016, Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack, Ceram. Int., 42, 3504, 10.1016/j.ceramint.2015.10.154
Duan, 2015, An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure, Mater. Des., 74, 125, 10.1016/j.matdes.2015.03.009
Gao, 2013, Behavior of metakaolin-based potassium geopolymers in acidic solutions, J. Non-Cryst. Solids, 380, 95, 10.1016/j.jnoncrysol.2013.09.002
Hajjaji, 2013, Composition and technological properties of geopolymers based on metakaolin and red mud, Mater. Des., 52, 648, 10.1016/j.matdes.2013.05.058
Huseien, 2016, Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar, Ain Shams Eng. J.
Cwirzen, 2014, The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers, Constr. Build. Mater., 66, 53, 10.1016/j.conbuildmat.2014.05.022
Abdul Rahim, 2014, Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties, Mater. Sci. Forum, 803, 10.4028/www.scientific.net/MSF.803.179
Sperberga, 2015, Mechanical properties of materials obtained via alkaline activation of illite-based clays of Latvia, J. Phys.: Conf. Series, 602, 012007
Sabitha, 2012, Reactivity, workability and strength of potassium versus sodium-activated high volume fly ash-based geopolymers, Curr. Sci., 1320
Satpute, 2016, Investigation of alkaline activators for fly ash-based geopolymer concrete, Int. J. Adv. Res. Innovative Ideas Educ., 2, 22
Wang, 2016, Study on engineering properties of alkali-activated ladle furnace slag geopolymer, Constr. Build. Mater., 123, 800, 10.1016/j.conbuildmat.2016.07.068
Parthiban, 2017, Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete, Constr. Build. Mater., 133, 65, 10.1016/j.conbuildmat.2016.12.050
Aboulayt, 2017, Properties of metakaolin based geopolymer incorporating calcium carbonate, Adv. Powder Technol., 10.1016/j.apt.2017.06.022
Shaikh, 2015, Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures, Fire Mater., 39, 174, 10.1002/fam.2240
Ding, 2017, Application of geopolymer paste for concrete repair, Struct. Concr., 10.1002/suco.201600161
Kupwade-Patil, 2012, Impact of alkali silica reaction on fly ash-based geopolymer concrete, J. Mater. Civil Eng., 25, 131, 10.1061/(ASCE)MT.1943-5533.0000579
Fernández-Jiménez, 2002, The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate, Cem. Concr. Res., 32, 1019, 10.1016/S0008-8846(01)00745-1
Singh, 2014
Fernández-Jiménez, 2007, Durability of alkali-activated fly ash cementitious materials, J. Mater. Sci., 42, 3055, 10.1007/s10853-006-0584-8
Bakharev, 2005, Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cem. Concr. Res., 35, 1233, 10.1016/j.cemconres.2004.09.002
Hardjito, 2004, On the development of fly ash-based geopolymer concrete, Mater. J., 101, 467
Rajamane, 2012, Sulphate resistance and eco-friendliness of geopolymer concretes, Indian Concr. J., 86, 13
Bernal, 2012, Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends, Constr. Build. Mater., 33, 99, 10.1016/j.conbuildmat.2012.01.017
Montes, 2013, Rheological behaviour of fly ash-based geopolymers, STP 1566 Geopolym. Binder Syst., ASTM, 72
Palacios, 2008, Rheology and setting of alkali-activated slag pastes and mortars: effect of organic admixture, Mater. J., 105, 140
Yost, 2013, Structural behavior of alkali activated fly ash concrete. Part 1: mixture design, material properties and sample fabrication, Mater. Struct., 46, 435, 10.1617/s11527-012-9919-x
Pan, 2011, Fracture properties of geopolymer paste and concrete, Magazine Concr. Res., 63, 763, 10.1680/macr.2011.63.10.763
Sarker, 2013, Fracture behaviour of heat cured fly ash based geopolymer concrete, Mater. Des., 44, 580, 10.1016/j.matdes.2012.08.005
Sumajouw, 2005, Behaviour and strength of reinforced fly ash-based geopolymer concrete beams, Austr. Struct. Eng. Conf., 453
Sumajouw, 2006
Dattatreya, 2011, Flexural behaviour of reinforced geopolymer concrete beams, Int. J. Civil Struct. Eng., 2, 138
Ng, 2013, The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear, Mag. Concr. Res., 65, 308, 10.1680/macr.12.00081
Mourougane, 2012, Shear behaviour of high strength GPC/TVC beams, Proc. Int. Conf. Adv. Arch. Civil Eng. (AARCV 2012), 21, 142
Yost, 2013, Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings, Mater. Struct., 46, 449, 10.1617/s11527-012-9985-0
Andalib, 2014, Structural performance of sustainable waste palm oil fuel ash-fly ash geo-polymer concrete beams, J. Environ. Treatment Techniques, 2, 115
Srinivasan, 2014, An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams, Int. J. Eng. Sci. Res. Technol., 3, 1963
Devika, 2015, Study of flexural behavior of hybrid fiber reinforced geopolymer concrete beam, Int. J. Sci. Res., 4, 130
Kathirvel, 2016, Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete, Constr. Build. Mater., 102, 51, 10.1016/j.conbuildmat.2015.10.148
Sujatha, 2012, Strength assessment of heat cured geopolymer concrete slender column, Asian J. Civil Eng., 13, 635
Rahman, 2011
Ganesan, 2015, Effect of fibres on the strength and behaviour of GPC columns, Mag. Concr. Res., 68, 99, 10.1680/jmacr.15.00049
Nagan, 2014, A study on load carrying capacity of fly ash based polymer concrete columns strengthened using double layer GFRP wrapping, Adv. Mater. Sci. Eng., 10.1155/2014/312139
Rajendran, 2013, An experimental investigation on the flexural behavior of geopolymer ferrocement slabs, J. Eng. Technol., 3
Nagan, 2014, Behaviour of geopolymer ferrocement slabs subjected to impact, Iranian J. Sci. Technol. Trans. Civil Eng., 38, 223
Visintin, 2017, Shear behaviour of geopolymer concrete beams without stirrups, Constr. Build. Mater., 148, 10, 10.1016/j.conbuildmat.2017.05.010
Albitar, 2017, Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns, Constr. Build. Mater., 141, 104, 10.1016/j.conbuildmat.2017.03.014
Noushini, 2016, Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete, Cem. Concr. Compos., 73, 136, 10.1016/j.cemconcomp.2016.07.004
Ma, 2014, New theoretical model for SSTT-confined HSC columns, Mag. Concr. Res., 66, 674, 10.1680/macr.13.00230
Chau-Khun, 2015, Elastic design of slender high-strength RC circular columns confined with external tensioned steel straps, Adv. Struct. Eng., 18, 1487, 10.1260/1369-4332.18.9.1487
Hardjito, 2005, 23
Prachasaree, 2014, Development of equivalent stress block parameters for fly-ash-based geopolymer concrete, Arabian J. Sci. Eng., 39, 8549, 10.1007/s13369-014-1447-2
Reddy, 2016, A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete, Microporous Mesoporous Mater., 234, 12, 10.1016/j.micromeso.2016.07.005
Kim, 2014, An experimental evaluation of development length of reinforcements embedded in geopolymer concrete, Appl. Mech. Mater., 578, 441, 10.4028/www.scientific.net/AMM.578-579.441
He, 2013, Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cem. Concr. Compos., 37, 108, 10.1016/j.cemconcomp.2012.11.010
Nazari, 2011, Properties of geopolymer with seeded fly ash and rice husk bark ash, Mater. Sci. Eng., A, 528, 7395, 10.1016/j.msea.2011.06.027
Songpiriyakij, 2010, Compressive strength and degree of reaction of biomass-and fly ash-based geopolymer, Constr. Build. Mater., 24, 236, 10.1016/j.conbuildmat.2009.09.002
Cheah, 2017, The use of high calcium wood ash in the preparation of Ground Granulated Blast Furnace Slag and Pulverized Fly Ash geopolymers: a complete microstructural and mechanical characterization, J. Cleaner Prod., 156, 114, 10.1016/j.jclepro.2017.04.026
Samsudin, 2015, Optimization on the hybridization ratio of ground granulated blast furnace slag and high calcium wood ash (GGBS–HCWA) for the fabrication of geopolymer mortar, Adv. Environ. Biol., 9, 22
Ban, 2017, Mechanical and durability performance of novel self-activating geopolymer mortars, Procedia Eng., 171, 564, 10.1016/j.proeng.2017.01.374
Mo, 2016, Structural performance of reinforced geopolymer concrete members: a review, Constr. Build. Mater., 120, 251, 10.1016/j.conbuildmat.2016.05.088
