A new carbon allotrope with C28 cage: T-C64

Chinese Journal of Physics - Tập 68 - Trang 647-653 - 2020
Qun Wei1, Rui Zhang1, Bing Wei1, Ruike Yang1, Haiyan Yan2, Meiguang Zhang3, Mingwei Hu1, Xuanmin Zhu4
1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
2College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
3College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, 721016 Baoji, China
4School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China

Tài liệu tham khảo

Wei, 2017, A new superhard carbon allotrope: tetragonal C64, J. Mater. Sci., 52, 2385, 10.1007/s10853-016-0564-6 Bu, 2019, A superhard orthorhombic carbon with all six-membered-ring in sp3 bonding networks, Phys. lett. A, 383, 2809, 10.1016/j.physleta.2019.05.051 Vedhanarayanan, 2018, Hybrid materials of 1D and 2D carbon allotropes and synthetic π-systems, NPG Asia Mater, 10, 107, 10.1038/s41427-018-0017-6 Lijima, 1991, Helical microtubules of graphitic carbon, Nat, 354, 56, 10.1038/354056a0 Baughman, 1987, Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J, Chem. Phys., 87, 6687 Zhao, 2016, H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep., 6, 21879, 10.1038/srep21879 Niu, 2014, a metallic carbon allotrope in sp3 bonding networks, J, Chem. Phys., 140 Yang, 2020, Orthorhombic C14 carbon: a novel superhard sp3 carbon allotrope, Carbon, 156, 309, 10.1016/j.carbon.2019.09.049 Li, 2009, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett, 102, 10.1103/PhysRevLett.102.175506 Wang, 2012, Orthorhombic carbon allotrope of compressed graphite: Ab initiocalculations, Phys. Rev. B, 85 Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett, 106 Niu, 2012, Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.135501 Umemoto, 2010, Body-centered tetragonal C4: a viable sp3 carbon allotrope, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.125504 Zhao, 2012, Tetragonal allotrope of group 14 elements, J, Am. Chem. Soc., 134, 12362, 10.1021/ja304380p Zhao, 2011, Novel superhard carbon: c-centered orthorhombic C8, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.215502 Liu, 2020, Superhard conductive orthorhombic carbon polymorphs, Carbon, 158, 546, 10.1016/j.carbon.2019.11.024 Z, 2018, Orthorhombic carbon oC24: a novel topological nodal line semimetal, Carbon, 133, 39, 10.1016/j.carbon.2018.03.003 Z, 2015, Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuratio, Phys. Rev. B, 91 David, 1991, Crystal structure and bonding of ordered C60, Nat, 353, 147, 10.1038/353147a0 Wang, 2016, Body-centered orthorhombic C16: a novel topological node-line semimetal, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.195501 Wang, 2012, CALYPSO: a method for crystal structure prediction, Comput. Phys. Commun., 183, 2063, 10.1016/j.cpc.2012.05.008 Wu, 2017, Superhard three-dimensional carbon with metallic conductivity, Carbon, 123, 311, 10.1016/j.carbon.2017.07.034 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106 Fan, 2015, Structural, mechanical, and electronic properties of P3m1-BCN, J, Phys. Chem. Solids, 79, 89, 10.1016/j.jpcs.2014.12.008 Li, 2012, Anisotropic hardness prediction of crystalline hard materials from the electronegativity, Acta Mater, 60, 35, 10.1016/j.actamat.2011.09.011 Wu, 2007, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 76 Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 65, 349, 10.1088/0370-1298/65/5/307 Pugh, 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb, Dublin Philos. Mag. J. Sci, 45, 823, 10.1080/14786440808520496 Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermet, 19, 1275, 10.1016/j.intermet.2011.03.026