A new carbon allotrope with C28 cage: T-C64
Tài liệu tham khảo
Wei, 2017, A new superhard carbon allotrope: tetragonal C64, J. Mater. Sci., 52, 2385, 10.1007/s10853-016-0564-6
Bu, 2019, A superhard orthorhombic carbon with all six-membered-ring in sp3 bonding networks, Phys. lett. A, 383, 2809, 10.1016/j.physleta.2019.05.051
Vedhanarayanan, 2018, Hybrid materials of 1D and 2D carbon allotropes and synthetic π-systems, NPG Asia Mater, 10, 107, 10.1038/s41427-018-0017-6
Lijima, 1991, Helical microtubules of graphitic carbon, Nat, 354, 56, 10.1038/354056a0
Baughman, 1987, Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J, Chem. Phys., 87, 6687
Zhao, 2016, H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network, Sci. Rep., 6, 21879, 10.1038/srep21879
Niu, 2014, a metallic carbon allotrope in sp3 bonding networks, J, Chem. Phys., 140
Yang, 2020, Orthorhombic C14 carbon: a novel superhard sp3 carbon allotrope, Carbon, 156, 309, 10.1016/j.carbon.2019.09.049
Li, 2009, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett, 102, 10.1103/PhysRevLett.102.175506
Wang, 2012, Orthorhombic carbon allotrope of compressed graphite: Ab initiocalculations, Phys. Rev. B, 85
Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett, 106
Niu, 2012, Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.135501
Umemoto, 2010, Body-centered tetragonal C4: a viable sp3 carbon allotrope, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.125504
Zhao, 2012, Tetragonal allotrope of group 14 elements, J, Am. Chem. Soc., 134, 12362, 10.1021/ja304380p
Zhao, 2011, Novel superhard carbon: c-centered orthorhombic C8, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.215502
Liu, 2020, Superhard conductive orthorhombic carbon polymorphs, Carbon, 158, 546, 10.1016/j.carbon.2019.11.024
Z, 2018, Orthorhombic carbon oC24: a novel topological nodal line semimetal, Carbon, 133, 39, 10.1016/j.carbon.2018.03.003
Z, 2015, Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuratio, Phys. Rev. B, 91
David, 1991, Crystal structure and bonding of ordered C60, Nat, 353, 147, 10.1038/353147a0
Wang, 2016, Body-centered orthorhombic C16: a novel topological node-line semimetal, Phys. Rev. Lett., 116, 10.1103/PhysRevLett.116.195501
Wang, 2012, CALYPSO: a method for crystal structure prediction, Comput. Phys. Commun., 183, 2063, 10.1016/j.cpc.2012.05.008
Wu, 2017, Superhard three-dimensional carbon with metallic conductivity, Carbon, 123, 311, 10.1016/j.carbon.2017.07.034
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 78, 10.1103/PhysRevB.78.134106
Fan, 2015, Structural, mechanical, and electronic properties of P3m1-BCN, J, Phys. Chem. Solids, 79, 89, 10.1016/j.jpcs.2014.12.008
Li, 2012, Anisotropic hardness prediction of crystalline hard materials from the electronegativity, Acta Mater, 60, 35, 10.1016/j.actamat.2011.09.011
Wu, 2007, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 76
Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 65, 349, 10.1088/0370-1298/65/5/307
Pugh, 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb, Dublin Philos. Mag. J. Sci, 45, 823, 10.1080/14786440808520496
Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermet, 19, 1275, 10.1016/j.intermet.2011.03.026