Plasma assisted atomic layer deposition NiO nanofilms for improved hybrid solid state electrochromic device
Tài liệu tham khảo
Batchelder, 1988, Colour and chromism of conjugated polymers, Contemp. Phys., 29, 3, 10.1080/00107518808213749
Granqvist, 2003, Electrochromic coatings and devices: survey of some recent advances, Thin Solid Films, 442, 201, 10.1016/S0040-6090(03)00983-0
Chua, 2019, 1
Kumar, 2012, Spatially resolved Raman spectroelectrochemistry of solid-state polythiophene/viologen memory devices, J. Am. Chem. Soc., 134, 14869, 10.1021/ja304458s
Hernandez, 2018, Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu, ACS Energy Lett., 3, 104, 10.1021/acsenergylett.7b01072
Grigioni, 2019, In operando photoelectrochemical femtosecond transient absorption spectroscopy of WO3/BiVO4 heterojunctions, ACS Energy Lett., 4, 2213, 10.1021/acsenergylett.9b01150
Cai, 2020, Molecular level assembly for high-performance flexible electrochromic energy-storage devices, ACS Energy Lett., 5, 1159, 10.1021/acsenergylett.0c00245
Eh, 2021, Robust trioptical-state electrochromic energy storage device enabled by reversible metal electrodeposition, ACS Energy Lett., 6, 4328, 10.1021/acsenergylett.1c01632
Périé, 2022, Colored electrolytes for electrochromic devices, Sol. Energy Mater. Sol. Cell., 238, 10.1016/j.solmat.2022.111626
Cai, 2017, Inkjet printed large area multifunctional smart windows, Adv. Energy Mater., 7, 10.1002/aenm.201602598
Mallikarjuna, 2020, Electrochromic smart windows using 2D-MoS2 nanostructures protected silver nanowire based flexible transparent electrodes, Mater. Sci. Semicond. Process., 117, 10.1016/j.mssp.2020.105176
Lampert, 1984, Electrochromic materials and devices for energy efficient windows, Sol. Energy Mater., 11, 1, 10.1016/0165-1633(84)90024-8
Barile, 2016, Polymer–nanoparticle electrochromic materials that selectively modulate visible and near-infrared light, Chem. Mater., 28, 1439, 10.1021/acs.chemmater.5b04811
Song, 2021, Novel electrochromic materials based on chalcogenoviologens for smart windows, E-price tag and flexible display with improved reversibility and stability, Chem. Eng. J., 422, 10.1016/j.cej.2021.130057
Baucke, 1988, Reflecting electrochromic devices, Displays, 9, 179, 10.1016/0141-9382(88)90065-0
Ghosh, 2022, Electrochemically reduced graphene oxide/nano-WO$$_{3}$$composite-based supercapacitor electrodes for better energy storage, Eur. Phys. J. Spec. Top., 10.1140/epjs/s11734-022-00542-5
Yang, 2016, Electrochromic energy storage devices, Mater. Today, 19, 394, 10.1016/j.mattod.2015.11.007
Chen, 2013, Nanostructured morphology control for efficient supercapacitor electrodes, J. Mater. Chem., 1, 2941, 10.1039/C2TA00627H
Kim, 2020, Reliable, high-performance electrochromic supercapacitors based on metal-doped nickel oxide, ACS Appl. Mater. Interfaces, 12, 51978, 10.1021/acsami.0c15424
Chen, 2013, Nanostructured morphology control for efficient supercapacitor electrodes, J. Mater. Chem. A., 1, 2941, 10.1039/C2TA00627H
Pathak, 2021, Nickel cobalt oxide nanoneedles for electrochromic glucose sensors, ACS Appl. Nano Mater., 4, 2143, 10.1021/acsanm.0c03451
Mishra, 2018, Mesoporous nickel oxide (NiO) nanopetals for ultrasensitive glucose sensing, Nanoscale Res. Lett., 13, 16, 10.1186/s11671-018-2435-3
Kumar, 2021, Current status of some electrochromic materials and devices: a brief review, J. Phys. D Appl. Phys., 10.1088/1361-6463/ac10d6
Cai, 2014, Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application, J. Phys. Chem. C, 118, 6690, 10.1021/jp500699u
Shinde, 2020, Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage, ChemSusChem, 13, 11, 10.1002/cssc.201902071
Penin, 2006, Improved cyclability by tungsten addition in electrochromic NiO thin films, Sol. Energy Mater. Sol. Cell., 90, 422, 10.1016/j.solmat.2005.01.018
Wang, 2021, Temperature dependence of the electrochromic properties of complementary NiO//WO3 based devices, Sol. Energy Mater. Sol. Cell., 230, 10.1016/j.solmat.2021.111239
Min Kim, 2019, Tetrathiafulvalene: effective organic anodic materials for WO 3 -based electrochromic devices, RSC Adv., 9, 19450, 10.1039/C9RA02840D
Mortimer, 1999, Organic electrochromic materials, Electrochim. Acta, 44, 2971, 10.1016/S0013-4686(99)00046-8
Welsh, 2021, Water soluble organic electrochromic materials, RSC Adv., 11, 5245, 10.1039/D0RA10346B
Rosseinsky, 2001, Electrochromic systems and the prospects for devices, Adv. Mater., 13, 783, 10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
Mitchell, 2003, A photochromic, electrochromic, thermochromic Ru complexed benzannulene: an organometallic example of the Dimethyldihydropyrene−Metacyclophanediene valence isomerization, J. Am. Chem. Soc., 125, 7581, 10.1021/ja034807d
2020, Raw hibiscus extract as redox active biomaterial for novel herbal electrochromic device, Sol. Energy Mater. Sol. Cell., 215
Ghosh, 2021, Aloe vera flower extract as a botanical resistive memory element: a natural memristor, ACS Applied Electronic Materials, 10.1021/acsaelm.1c00071
Roy, 2021, Transmissive to blackish-green NIR electrochromism in a Co(ii)-based interfacial co-ordination thin film, Chem. Commun., 57, 7565, 10.1039/D1CC02815D
Halder, 2022, Enhancement of the electrochemical performance of a cathodically coloured organic electrochromic material through the formation of hydrogen bonded supramolecular polymer assembly, Sol. Energy Mater. Sol. Cell., 245, 10.1016/j.solmat.2022.111858
Ren, 2013, The coloration and degradation mechanisms of electrochromic nickel oxide, Sol. Energy Mater. Sol. Cell., 116, 83, 10.1016/j.solmat.2013.03.042
Dalavi, 2013, Electrochromic properties of dandelion flower like nickel oxide thin films, J. Mater. Chem., 1, 1035, 10.1039/C2TA00842D
Pathak, 2020, Chronopotentiometric deposition of nanocobalt oxide for electrochromic auxiliary active electrode application, Phys. Status Solidi, 217
Chen, 2010, Graphene Oxide−MnO2 nanocomposites for supercapacitors, ACS Nano, 4, 2822, 10.1021/nn901311t
Li, 2017, Durability-reinforced electrochromic device based on surface-confined Ti-doped V2O5 and solution-phase viologen, Electrochim. Acta, 248, 206, 10.1016/j.electacta.2017.07.049
Chaudhary, 2019, Polythiophene–PCBM-based all-organic electrochromic device: fast and flexible, ACS Appl. Electron. Mater., 1, 58, 10.1021/acsaelm.8b00012
Kandpal, 2022, Bifunctional application of viologen-MoS2-CNT/polythiophene device as electrochromic diode and half-wave rectifier, ACS Mater. Au., 2, 293, 10.1021/acsmaterialsau.1c00064
Chaudhary, 2020, Polythiophene-nanoWO 3 bilayer as an electrochromic infrared filter: a transparent heat shield, J. Mater. Chem. C, 8, 1773, 10.1039/C9TC05523A
Camurlu, 2014, Polypyrrole derivatives for electrochromic applications, RSC Adv., 4, 55832, 10.1039/C4RA11827H
Girotto, 1998, Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye, Adv. Mater., 10, 790, 10.1002/(SICI)1521-4095(199807)10:10<790::AID-ADMA790>3.0.CO;2-R
Hu, 2003, Optical and electrical responses of polymeric electrochromic devices: effect of polyacid incorporation in polyaniline film, Solid State Ionics, 161, 165, 10.1016/S0167-2738(03)00214-5
Sheng, 2011, Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices, Polymer, 52, 5567, 10.1016/j.polymer.2011.10.001
Chaudhary, 2019, Prussian blue-viologen inorganic–organic hybrid blend for improved electrochromic performance, ACS Applied Electronic Materials, 10.1021/acsaelm.9b00089
Mishra, 2017, In-situ spectroscopic studies of viologen based electrochromic device, Opt. Mater., 66, 65, 10.1016/j.optmat.2017.01.030
Li, 2019, Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries, Angew. Chem., 131, 8556, 10.1002/ange.201903152
Patil, 2002, Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films, Appl. Surf. Sci., 199, 211, 10.1016/S0169-4332(02)00839-5
Dalavi, 2013, Electrochromic performance of sol–gel deposited NiO thin film, Mater. Lett., 90, 60, 10.1016/j.matlet.2012.08.108
Usha, 2013, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique, J. Appl. Phys., 114, 10.1063/1.4821966
Koshtyal, 2019, Atomic layer deposition of NiO to produce active material for thin-film lithium-ion batteries, Coatings, 9, 301, 10.3390/coatings9050301
Koshtyal, 2021, Atomic layer deposition of Ni-Co-O thin-film electrodes for solid-state LIBs and the influence of chemical composition on overcapacity, Nanomaterials, 11, 907, 10.3390/nano11040907
Maximov, 2020, Atomic layer deposition of lithium–nickel–silicon oxide cathode material for thin-film lithium-ion batteries, Energies, 13, 1, 10.3390/en13092345
Cazzanelli, 2003, Study of vibrational and magnetic excitations in Ni$\less$sub$\greater$$\less$i$\greater$c$\less$/i$\greater$$\less$/sub$\greater$Mg$\less$sub$\greater$1 $\less$i$\greater$c$\less$/i$\greater$$\less$/sub$\greater$O solid solutions by Raman spectroscopy, J. Phys. Condens. Matter, 15, 2045, 10.1088/0953-8984/15/12/321
Akinkuade, 2019, Effects of thermal treatment on structural, optical and electrical properties of NiO thin films, Phys. B Condens. Matter, 575, 10.1016/j.physb.2019.411694
Noh, 2012, Photoelectrochemical properties of Fe2O3 supported on TiO2-based thin films converted from self-assembled hydrogen titanate nanotube powders, J. Nanomater., 2012, 10.1155/2012/475430
Pathak, 2020, Nano-cobalt oxide/viologen hybrid solid state device: electrochromism beyond chemical cell, Appl. Phys. Lett., 116, 10.1063/1.5145079
Kandpal, 2021, Multi-walled carbon nanotubes doping for fast and efficient hybrid solid state electrochromic device, Appl. Phys. Lett., 118, 10.1063/5.0046669
Mishra, 2017, Interfacial redox centers as origin of color switching in organic electrochromic device, Opt. Mater., 66, 65, 10.1016/j.optmat.2017.01.030
Kandpal, 2022, MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance, Sol. Energy Mater. Sol. Cell., 236, 10.1016/j.solmat.2021.111502
Lee, 1999, Electrochromic coloration efficiency of a-WO3−y thin films as a function of oxygen deficiency, Appl. Phys. Lett., 75, 1541, 10.1063/1.124782
Park, 2021, High-coloration efficiency and low-power consumption electrochromic film based on multifunctional conducting polymer for large scale smart windows, ACS Appl. Electron. Mater., 3, 4781, 10.1021/acsaelm.1c00664
Kondalkar, 2016, Electrochromic Performance of Nickel Oxide Thin Film: Synthesis via Electrodeposition Technique, Macromolecular Symposia, vol. 361, 47, 10.1002/masy.201400253
Guo, 2021, Enhanced electrochromic performance by anodic polarization in nickel oxide films, Crystals, 11, 615, 10.3390/cryst11060615
Li, 2021, Nickel oxide film with tertiary hierarchical porous structure and high electrochromic performance and stability, Mater. Chem. Phys., 269, 10.1016/j.matchemphys.2021.124738
Xie, 2019, Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films, Sol. Energy Mater. Sol. Cell., 200, 10.1016/j.solmat.2019.110017
Zhao, 2015, Template synthesis of NiO ultrathin nanosheets using polystyrene nanospheres and their electrochromic properties, RSC Adv., 5, 38533, 10.1039/C5RA04571A