Elevated CO2 levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem

Journal of Hazardous Materials - Tập 327 - Trang 64-70 - 2017
Ying Yin1, Zhengxue Hu1, Wenchao Du1, Fuxun Ai1, Rong Ji1, Jorge L. Gardea-Torresdey2,3,4, Hongyan Guo1
1State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
2Department of Chemistry, The University of Texas at El Paso, El Paso, TX 79968, United States
3Environmental Science and Engineering PhD program, The University of Texas at El Paso, El Paso, TX 79968, United States
4University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, United States

Tài liệu tham khảo

Zhao, 2013, Acute ZnO nanoparticles exposure induces developmental toxicity oxidative stress and DNA damage in embryo-larval zebrafish, Aquat. Toxicol., 136–137, 49, 10.1016/j.aquatox.2013.03.019 Song, 2010, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles, Toxicol. Lett., 199, 389, 10.1016/j.toxlet.2010.10.003 Jones, 2014, Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH, J. Hazard. Mater., 275, 79, 10.1016/j.jhazmat.2014.04.058 Demir, 2014, Zinc oxide nanoparticles: genotoxicity, interactions with UV-light and cell-transforming potential, J. Hazard. Mater., 264, 420, 10.1016/j.jhazmat.2013.11.043 Majedi, 2014, Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis, J. Hazard. Mater., 264, 370, 10.1016/j.jhazmat.2013.11.015 Hao, 2013, Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts, Ecotoxicol. Environ. Saf., 91, 52, 10.1016/j.ecoenv.2013.01.007 Keller, 2010, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol., 44, 1962, 10.1021/es902987d Weinberg, 2011, Evaluating engineered nanoparticles in natural waters, TrAC Trends Anal. Chem., 30, 72, 10.1016/j.trac.2010.09.006 Zhang, 2012, Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model, Chemosphere, 89, 530, 10.1016/j.chemosphere.2012.05.044 Johnston, 2010, Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish, Environ, Sci. Technol., 44, 1144, 10.1021/es901971a Levard, 2013, Sulfidation of silver nanoparticles: natural antidote to their toxicity, Environ. Sci. Technol., 47, 13440, 10.1021/es403527n Pokhrel, 2013, Impacts of select organic ligands on the colloidal stability, dissolution dynamics and toxicity of silver nanoparticles, Environ. Sci. Technol., 47, 12877, 10.1021/es403462j Knohl, 2011, Global change: indirect feedbacks to rising CO2, Nature, 475, 177, 10.1038/475177a Waters, 2011, Changes in south pacific anthropogenic carbon, Global Biogeochem. Cycles, 25, 4, 10.1029/2010GB003988 Raven, 2005, Ocean acidification due to increasing atmospheric carbon dioxide, R. Soc. Lond. Policy Doc., 12, 60 Trautz, 2012, Effect of dissolved CO2 on a shallow groundwater system: a controlled release field experiment, Environ. Sci. Technol., 47, 298, 10.1021/es301280t Roy, 2012, Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate C and N allocations in tropical rice (Oryza sativa L.), Field Crops Res., 139, 71, 10.1016/j.fcr.2012.10.011 Du, 2011, TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, J. Environ. Monit., 13, 822, 10.1039/c0em00611d Rauret, 1999, Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit., 1, 57, 10.1039/a807854h Xia, 2008, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2, 2121, 10.1021/nn800511k Shi, 2005, Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus, Aquat. Toxicol., 74, 365, 10.1016/j.aquatox.2005.06.009 Ohkawa, 1979, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95, 351, 10.1016/0003-2697(79)90738-3 Hissin, 1976, A fluorometric method for determination of oxidized and reduced glutathione in tissues, Anal. Biochem., 74, 214, 10.1016/0003-2697(76)90326-2 Onosaka, 1981, The induced synthesis of metallothionein in various tissues of rat in response to metals. I. Effect of repeated injection of cadmium salts, Toxicology, 22, 91, 10.1016/0300-483X(81)90109-8 Sun, 2008, Hydroxyl radical generation and oxidative stress in Carassius auratus liver, exposed to pyrene, Ecotoxicol. Environ. Saf., 71, 446, 10.1016/j.ecoenv.2007.12.016 Derjaguin, 1941, Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physicochim. USSR, 14, 633 Morrison, 2002 Jiang, 2009, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, J. Nanopart. Res., 11, 77, 10.1007/s11051-008-9446-4 Bian, 2011, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, 27, 6059, 10.1021/la200570n French, 2009, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles, Environ. Sci. Technol., 43, 1354, 10.1021/es802628n Bradford, 2009, Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments, Environ. Sci. Technol., 43, 4530, 10.1021/es9001949 de Orte, 2014, Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations, Sci. Total Environ., 470–471, 356, 10.1016/j.scitotenv.2013.09.095 Oberdörster, 2002, Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats, J. Toxicol. Environ. Health Part A, 65, 1531, 10.1080/00984100290071658 Ramsden, 2009, Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain, Ecotoxicology, 18, 939, 10.1007/s10646-009-0357-7 Joo, 2013, Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): Influence of concentration and salinity, Aquat. Toxicol., 140–141, 398 Zhao, 2011, Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity, J. Hazard. Mater., 197, 304, 10.1016/j.jhazmat.2011.09.094 Heinlaan, 2008, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71, 1308, 10.1016/j.chemosphere.2007.11.047 Apps, 2010, Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage, Transp. Porous Med., 82, 215, 10.1007/s11242-009-9509-8 Tortiglione, 2009, Fluorescent nanocrystals reveal regulated portals of entry into and between the cells of Hydra, PLoS One, 4, 11, 10.1371/journal.pone.0007698 Fabrega, 2009, Interactions of silver nanoparticles with Pseudomonas putida biofilms, Environ. Sci. Technol., 43, 9004, 10.1021/es901706j Ma, 2013, Ecotoxicity of manufactured ZnO nanoparticles—a review, Environ. Pollut., 172, 76, 10.1016/j.envpol.2012.08.011 Sayes, 2005, Nano-C60 cytotoxicity is due to lipid peroxidation, Biomaterials, 26, 7587, 10.1016/j.biomaterials.2005.05.027 Park, 2008, Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2 B cells, Toxicology, 245, 90, 10.1016/j.tox.2007.12.022 Liu, 2010, Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells, Toxicology, 267, 172, 10.1016/j.tox.2009.11.012 Hao, 2012, Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles, Ecotoxicol. Environ. Saf., 80, 103, 10.1016/j.ecoenv.2012.02.017 Ren, 2013, Bioavailability and oxidative stress of cadmium to Corbicula fluminea, Environ. Sci.: Processes Impacts, 15, 860 Baloun, 2010, Complexes of glutathione with heavy metal ions as a new biochemical marker of aquatic environment pollution, Environ. Toxicol. Chem., 29, 497, 10.1002/etc.78 Masters, 1994, Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium, Proc. Natl. Acad. Sci. U. S. A., 91, 584, 10.1073/pnas.91.2.584 Qian, 2013, Colorimetric detection of metallothioneins using a thymine-rich oligonucleotide-Hg complex and gold nanoparticles, Anal. Biochem., 436, 45, 10.1016/j.ab.2013.01.011 Miyayama, 2013, Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate, Toxicology, 305, 20, 10.1016/j.tox.2013.01.004 Abbassi, 2010, Chloroform-induced oxidative stress in rat liver: implication of metallothionein, Toxicol. Ind. Health, 26, 487, 10.1177/0748233710373088