α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol–gel matrices: Activity and stability studies
Tài liệu tham khảo
Amaro, 2009, Anti-inflammatory activity of naringin and the biosynthesid naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice, Food Res. Int., 42, 1010, 10.1016/j.foodres.2009.04.016
Avnir, 2006, Recent bio-applications of sol–gel materials, J. Mater. Chem., 16, 1013, 10.1039/B512706H
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Branco, 2002, Preparation and characterization of new room temperature ionic liquids, Chem. Eur. J., 8, 3671, 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9
Brennan, 2003, Using sugar and amino acid additives to stabilize enzymes within sol–gel derived silica, Chem. Mater., 15, 737, 10.1021/cm020768d
Dupont, 2002, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev., 102, 3667, 10.1021/cr010338r
Fukui, 1986, Immobilization of biocatalysts for bioprocesses in organic solvent media, Biocatal. Org. Media, 29, 21
Greaves, 2008, Protic ionic liquids: properties and applications, Chem. Rev., 108, 206, 10.1021/cr068040u
Hara, 2009, Immobilised Burkholderia cepacia lipase in dry organic solvents and ionic liquids: a comparison, Green Chem., 11, 250, 10.1039/B814606C
Laane, 1987, Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., 30, 81, 10.1002/bit.260300112
Lee, 2007, Using ionic liquids to stabilize lipase within sol–gel derived silica, J. Mol. Catal. B: Enzym., 45, 57, 10.1016/j.molcatb.2006.11.008
Lee, 2007, Influence of ionic liquids as additives on sol–gel immobilized lipase, J. Mol. Catal. B: Enzym., 47, 129, 10.1016/j.molcatb.2007.05.002
Liu, 2005, A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application, Green Chem., 7, 655, 10.1039/b504689k
Liu, 2005, Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol–gel host materials, Chem. Commun., 1778, 10.1039/B417680D
Martins, 2008, Ionic liquids in heterocyclic synthesis, Chem. Rev., 108, 2015, 10.1021/cr078399y
Miller, 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426, 10.1021/ac60147a030
Moniruzzamana, 2010, Recent advances of enzymatic reactions in ionic liquids, Biochem. Eng. J., 48, 295, 10.1016/j.bej.2009.10.002
Park, 2003, Biocatalysis in ionic liquids—advantages beyond green technology, Curr. Opin. Biotechnol., 14, 432, 10.1016/S0958-1669(03)00100-9
Reetz, 2003, Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts, Adv. Synth. Catal., 345, 717, 10.1002/adsc.200303016
Ribeiro, 2008, Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds, J. Mol. Catal. B: Enzym., 52, 13, 10.1016/j.molcatb.2007.10.011
Shakeri, 2010, Significant changes in the transesterification activity of free and mesoporous-immobilized Rhizopus oryzae lipase in ionic liquids, J. Biotechnol., 145, 281, 10.1016/j.jbiotec.2009.11.014
Sheldon, 2002, Biocatalysis in ionic liquids, Green Chem., 4, 147, 10.1039/b110008b
Tischer, 1999, Immobilized enzymes: crystals or carriers?, TIBTECH, 17, 326, 10.1016/S0167-7799(99)01322-0
Ueno, 2008, Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure, J. Phys. Chem. B, 112, 9013, 10.1021/jp8029117
Ueno, 2008, Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids, Langmuir, 24, 5253, 10.1021/la704066v
van Rantwijk, 2007, Biocatalysis in ionic liquids, Chem. Rev., 107, 2757, 10.1021/cr050946x
Vila-Real, 2007, High pressure–temperature effects on enzymatic activity: naringin bioconversion, Food Chem., 102, 565, 10.1016/j.foodchem.2006.05.033
Vila-Real, 2010, An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis, Process Biochem., 10.1016/j.procbio.2010.02.004
Vila-Real, 2010, Improvement of activity and stability of soluble and sol–gel immobilized naringinase in co-solvent systems, J. Mol. Catal. B: Enzym., 10.1016/j.molcatb.2010.01.024
Vila-Real, H., Alfaia, A., Bronze, M.R., Calado, A., Ribeiro, M.H.L., submitted for publication.
Wasserscheid, 2000, Ionic liquids—new ‘solutions’ for transition metal catalysis, Angew. Chem. Int. Ed., 39, 3773, 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
Welton, 1999, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev., 99, 2071, 10.1021/cr980032t
Wu, 2004, An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose, Anal. Chim. Acta, 514, 219, 10.1016/j.aca.2004.03.052
Yang, 2009, Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis, J. Biotechnol., 144, 12, 10.1016/j.jbiotec.2009.04.011
Zarcula, 2009, Improvement of lipase catalytic properties by immobilization in hybrid matrices, World Acad. Sci. Eng. Technol., 52, 179
Zhao, 2010, Methods for stabilizing and activating enzymes in ionic liquids—a review, J. Chem. Technol. Biotechnol., 85, 891, 10.1002/jctb.2375
Zhou, 2004, Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol–gel nanocasting technique, Nano Lett., 4, 477, 10.1021/nl025861f