The quantitative linear-time–branching-time spectrum

Theoretical Computer Science - Tập 538 - Trang 54-69 - 2014
Uli Fahrenberg1, Axel Legay1
1IRISA–INRIA, Rennes, France

Tài liệu tham khảo

Blackwell, 1969, Infinite Gδ games with imperfect information, Zastosowania Matematyki, 10, 99 Černý, 2012, Simulation distances, Theoretical Computer Science, 413, 21, 10.1016/j.tcs.2011.08.002 Chatterjee, 2010, Quantitative languages, ACM Transactions on Computational Logic, 11, 10.1145/1805950.1805953 Chen, 2008, Game characterizations of process equivalences, vol. 5356, 107 de Alfaro, 2009, Linear and branching system metrics, IEEE Transactions on Software Engineering, 35, 258, 10.1109/TSE.2008.106 de Alfaro, 2003, Discounting the future in systems theory, vol. 2719, 1022 Desharnais, 2008, Approximate analysis of probabilistic processes, 264 Doyen, 2010, Robustness of sequential circuits, 77 Ehrenfeucht, 1961, An application of games to the completeness problem for formalized theories, Fundamenta Mathematicae, 49, 129, 10.4064/fm-49-2-129-141 Ehrenfeucht, 1979, Positional strategies for mean payoff games, International Journal of Game Theory, 8, 109, 10.1007/BF01768705 Fahrenberg, 2010, A quantitative characterization of weighted Kripke structures in temporal logic, Computing and Informatics, 29, 1311 Fahrenberg, 2012, A robust specification theory for modal event-clock automata, vol. 87, 5 Fahrenberg, 2011, The quantitative linear-time–branching-time spectrum, vol. 13, 103 Fahrenberg, 2011, Distances for weighted transition systems: Games and properties, vol. 57, 134 Ferguson Fraïssé, 1954, Sur quelques classifications des systèmes de relations, Publications Scientifiques de l'Université d'Alger, Série A, 1, 35 de Frutos Escrig, 2009, (Bi)simulations up-to characterise process semantics, Information and Computation, 207, 146, 10.1016/j.ic.2007.12.003 de Frutos Escrig, 2009, On the unification of process semantics: Equational semantics, vol. 249, 243 Groote, 1992, Structured operational semantics and bisimulation as a congruence, Information and Computation, 100, 202, 10.1016/0890-5401(92)90013-6 Hamming, 1950, Error detecting and error correcting codes, Bell System Technical Journal, 29, 147, 10.1002/j.1538-7305.1950.tb00463.x Hennessy, 1985, Algebraic laws for nondeterminism and concurrency, Journal of the ACM, 32, 137, 10.1145/2455.2460 Henzinger, 2005, Quantifying similarities between timed systems, vol. 3829, 226 Henzinger, 2006, The embedded systems design challenge, vol. 4085, 1 Larsen, 2011, Metrics for weighted transition systems: Axiomatization and complexity, Theoretical Computer Science, 412, 3358, 10.1016/j.tcs.2011.04.003 Lawvere, 1973, Metric spaces, generalized logic, and closed categories, Rendiconti del Seminario Matématico e Fisico di Milano, XLIII, 135, 10.1007/BF02924844 Lee, 2005, Absolutely positively on time: What would it take?, IEEE Computer, 38, 85, 10.1109/MC.2005.211 Martin, 1975, Borel determinacy, Annals of Mathematics, 102, 363, 10.2307/1971035 Martin, 1998, The determinacy of Blackwell games, Journal of Symbolic Logic, 63, 1565, 10.2307/2586667 Rounds, 1981, Possible futures, acceptances, refusals, and communicating processes, 140 Stankovic, 2005, Opportunities and obligations for physical computing systems, IEEE Computer, 38, 23, 10.1109/MC.2005.386 Stirling, 1995, Modal and temporal logics for processes, vol. 1043, 149 Thomsen, 1987 Thrane, 2010, Quantitative analysis of weighted transition systems, Journal of Logic and Algebraic Programming, 79, 689, 10.1016/j.jlap.2010.07.010 van Breugel, 1996, A theory of metric labelled transition systems, Annals of the New York Academy of Sciences, 806, 69, 10.1111/j.1749-6632.1996.tb49160.x van Breugel, 2005, A behavioural pseudometric for metric labelled transition systems, vol. 3653, 141 van Glabbeek, 2001, The linear time – branching time spectrum I, 3 Zwick, 1995, The complexity of mean payoff games, vol. 959, 1