Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach
Tóm tắt
The spectrum sensing is a key process of the cognitive radio technology in which the cognitive users identify the unutilized/underutilized primary users (PUs)/licensed users spectrum for its efficient utilization. The sensing performance of cognitive radio (CR) is generally measured in terms of false-alarm probability (
$$ P_{f} $$
) and detection probability (
$$ P_{d} $$
). IEEE 802.22 wireless regional area network is one of the typical cognitive radio standards to access unused licensed frequencies of TV band and according to this standard, the false-alarm probability of CR should be ≤ 0.1 and the detection probability must be ≥ 0.9. Further, the detection and false-alarm probabilities are greatly affected by the selected threshold value in the spectrum sensing approach and selection of threshold is a crucial step to yield the status (presence/absence) of PU. In most of the available literatures, the threshold is decided by fixing one parameter (
$$ P_{f} $$
or
$$ P_{d} $$
) and optimizing the other parameter (
$$ P_{d} $$
or
$$ P_{f} $$
). Moreover, at low SNR, while achieving one of the targeted sensing parameter, there is significant degradation in the other sensing parameter. Therefore, in this paper, we are motivated to decide the optimal threshold at low SNR (signal-to-noise ratio) in such a way where we can jointly achieve both sensing matrices (
$$ P_{f} $$
≤ 0.1 and
$$ P_{d} \ge 0.9 $$
) and provided better sensing performance in comparison to that of the traditional constant false-alarm rate and constant detection rate (CDR) threshold selection approaches. Further, we have illustrated that at low SNR, the proposed optimal threshold selection approach has provided better throughput as compare to that of the threshold selected by traditional CDR approach. The proposed approach has improved throughput approximately 24.63% when compared with CDR at chosen SNR.
Tài liệu tham khảo
Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communication, 24(3), 17–25.
Ding, J., Jiang, L., & He, C. (2018). User-centric energy-efficient resource management for time switching wireless powered communications. IEEE Communications Letters, 22(1), 165–168.
Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.
FCC. (2002). Spectrum policy task force report. In Proceedings of the federal communications commission (FCC’02), Washington, DC, USA.
Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.
Lin, Y.-E., Liu, K.-H., & Hsieh, H.-Y. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.
Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.
Agarwal, S., & De, S. (2016). eDSA: Energy-efficient dynamic spectrum access protocols for cognitive radio networks. IEEE Transactions on Mobile Communication, 15(12), 3057–3071.
Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal of Wireless Communications and Networking, 28, 1–16.
Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communication. Magazine, 46(4), 40–48.
Thakur, P., Singh, G., & Satashia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.
Pandit, S., & Singh, G. (2017). Spectrum sharing in cognitive radio networks: Medium access control protocol based approach. Cham: Springer.
Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114–121.
Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of the IEEE, 55(4), 523–531.
Nafkha, A., & Aziz, B. (2014). Closed-form approximation for the performance of finite sample-based energy detection using correlated receiving antennas. IEEE Wireless Communications Letters, 3(6), 577–580.
Atapattu, S., Tellambura, C., & Jiang, H. (2010). Analysis of area under the ROC curve of energy detection. IEEE Transactions on Communications, 9(3), 1216–1225.
Sobron, I., Diniz, P., Martins, W., & Velez, M. (2015). Energy detection technique for adaptive spectrum sensing. IEEE Transactions on Communications, 63(3), 617–627.
Kapoor, S., Rao, S., & Singh, G. (2011). Opportunistic spectrum sensing by employing matched filter in cognitive radio network. In Proceedings of IEEE international conference on communication systems and network technologies (CSNT 2011), India (pp. 580–583).
Salahdine, F., Ghazi, H. E., Kaabouch, N., & Fihri, W. F. (2015). Matched filter detection with dynamic threshold for cognitive radio network. In Proceedings of international conference on wireless networks and mobile communications, Morocco (pp. 1–6).
Du, K.-L., & Mow, W. H. (2010). Affordable cyclostationarity-based spectrum sensing for cognitive radio with smart antenna. IEEE Transactions on Vehicular Technology, 59(4), 1877–1886.
Zeng, Y., & Liang, Y. (2009). Spectrum-sensing algorithms for cognitive radio based on statistical co-variances. IEEE Transaction on Vehicular Technology, 58(4), 1804–1815.
Zeng, Y., & Liang, Y. C. (2009). Eigen value-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communication, 57(6), 1784–1793.
Yousif, E. H. G., Ratnarajah, T., & Sellathurai, M. (2016). A frequency domain approach to eigenvalue-based detection with diversity reception and spectrum estimation. IEEE Transactions on Signal Processing, 64(1), 35–47.
Scott Parsons. (2014). “Literature review of cognitive radio spectrum sensing” EE 359 project. Stanford: Stanford University.
Ali, A., & Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communication Surveys Tutorial, 19(2), 1277–1304.
IEEE 802.22 Standard. (2005). http://www.ieee802.org/22/. Accessed July 2018.
Atapattu, S., Tellambura, C., & Jiang, H. (2011). Spectrum sensing via energy detector in low SNR. In Proceedings of IEEE international conference on communications (ICC) (pp. 1–5).
Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Fixed and dynamic threshold selection criteria in energy detection for cognitive radio communication systems. In Proceedings of 10th IEEE international conference on contemporary computing (IC3), India (pp. 1–6).
Verma, G., & Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Telecommunication System, 63(4), 547–556.
Koley, S., Mirza, V., Islam, S., & Mitra, D. (2015). Gradient-based real-time spectrum sensing at low SNR. IEEE Communications Letters, 19(3), 391–394.
Verma, G., & Sahu, O. P. (2016). Opportunistic selection of threshold in cognitive radio networks. Wireless Personal Communication, 92(2), 711–726.
Kumar, A., Thakur, P., Pandit, S., & Singh, G. (2017). Performance analysis of different threshold selection schemes in energy detection for cognitive radio communication systems. In Proceedings of 4th IEEE international conference on image information processing (ICIIP), India (pp. 153–158).
Gandhi, P. P., & Kassam, S. A. (1988). Analysis of CFAR processors in non-homogeneous background. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 427–445.
Kortun, A., Ratnarajah, T., Sellathurai, M., Liang, Y. C., & Zeng, Y. (2014). On the eigenvalue-based spectrum sensing and secondary user throughput. IEEE Transactions on Vehicular Technology, 63(3), 1480–1486.
Lehtomäki, J. J., Vartiainen, J., Juntti, M., & Saarnisaari, H. (2007). CFAR outlier detection with forward methods. IEEE Transactions on Signal Processing, 55(9), 4702–4706.
Mahdi, H., Badrawi, A., & Kirsch, N. J. (2015). An EMD based double threshold detector for spectrum sensing in cognitive radio networks. In Proceedings of 82nd IEEE international conference on vehicular technology (VTC Fall), Boston, USA (pp. 1–5).
Politis, C., Maleki, S., Tsinos, C. G., Liolis, K. P., Chatzinotas, S., & Ottersten, B. (2017). Simultaneous sensing and transmission for cognitive radios with imperfect signal cancellation. IEEE Transactions on Wireless Communications, 16(9), 5599–5615.
Sarker, M. (2015). Energy detector-based spectrum sensing by adaptive threshold for low SNR in CR networks. In Proceedings of 24th wireless and optical communication conference (WOCC), Taipei, Taiwan (pp. 118–122).
Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.
Xuping, Z., Haigen, H., & Guoxin, Z. (2010). Optimal threshold and weighted cooperative data combining rule in cognitive radio network. In Proceedings of 12th IEEE international conference on communication technology (ICCT), Nanjing, China (pp. 1464–1467).
Choi, H.-H., Jang, K., & Cheong, Y. (2008). Adaptive sensing threshold control based on transmission power in cognitive radio systems. In Proceedings of 3 rd international conference on cognitive radio oriented wireless networks and communication (CROWNCOM), Singapore (pp. 1–6).
Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2010). Dynamic threshold adaptation for spectrum sensing in cognitive radio systems. In Proceedings of radio and wireless symposium (RWS), New Orleans (pp. 468–471).
Joshi, D. R., Popescu, D. C., & Dobre, O. A. (2011). Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 15(1), 19–21.
Nasreddine, J., Riihijarvi, J., & Mahonen, P. (2010). Location-based adaptive detection threshold for dynamic spectrum access. In Proceedings of IEEE international symposium on new frontiers in dynamic spectrum access network, Singapore (pp. 1–10).
Yu, T. H., Sekkat, O., Parera, S. R., Markovic, D., & Cabric, D. (2011). A wideband spectrum-sensing processor with adaptive detection threshold and sensing time. IEEE Transaction Circuits and Systems I: Regular Papers, 58(11), 2765–2775.
Ling, X., Wu, B., Wen, H., Ho, P. H., Bao, Z., & Pan, L. (2012). Adaptive threshold control for energy detection-based spectrum sensing in cognitive radios. IEEE Wireless Communications Letters, 1(5), 448–451.
Umebayashi, K., Hayashi, K., & Lehtomäki, J. J. (2017). Threshold-setting for spectrum sensing based on statistical information. IEEE Communications Letters, 21(7), 1585–1588.
Ding, G., Jiao, Y., Wang, J., Zou, Y., Wu, Q., Yao, Y. D., et al. (2018). Spectrum inference in cognitive radio networks: Algorithms and applications. IEEE Communications Surveys & Tutorials, 20(1), 150–182.
Kerdabadi, M. S., Ghazizadeh, R., Farrokhi, H., & Najimi, M. (2018). Energy consumption minimization and throughput improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection. Wireless Network. https://doi.org/10.1007/s11276-018-1797-x.
Charan, C., & Pandey, R. (2018). Intelligent selection of threshold in covariance-based spectrum sensing for cognitive radio networks. Wireless Network, 24(8), 3267–3279.
Benedetto, F., & Giunta, G. (2018). A novel PU sensing algorithm for constant energy signals. IEEE Transactions on Vehicular Technology, 67(1), 827–831.
Jin, M., Guo, Q., Xi, J., Li, Y., Yu, Y., & Huang, D. D. (2015). Spectrum sensing using weighted covariance matrix in Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 64(11), 5137–5148.
Chen, A. Z., Shi, Z. P., & He, Z. Q. (2018). A robust blind detection algorithm for cognitive radio networks with correlated multiple antennas. IEEE Communications Letters, 22(3), 570–573.
Xiong, T., Yao, Y. D., Ren, Y., & Li, Z. (2018). Multiband spectrum sensing in cognitive radio networks with secondary user hardware limitation: random and adaptive spectrum sensing strategies. IEEE Transactions on Wireless Communications, 17(5), 3018–3029.
Bayat, A., & Aïssa, S. (2018). Full-duplex cognitive radio with asynchronous energy-efficient sensing. IEEE Transactions on Wireless Communications, 17(2), 1066–1080.
Makarfi, A., & Hamdi, K. (2013). Interference analysis of energy detection for spectrum sensing. IEEE Transactions on Vehicular Technology, 62(6), 2570–2578.
Verma, P., & Singh, B. (2018). Joint optimization of sensing duration and detection threshold for maximizing the spectrum utilization. Digital Signal Processing, 74, 94–101.
MacDonald, S. L., & Popescu, D. C. (2013). Impact of primary user activity on the performance of energy-based spectrum sensing in cognitive radio systems. In Proceedings of IEEE global communications conference (Globecom) (pp. 3224–3228).
Fu, C., Li, Y., He, Y., Jin, M., Wang, G., & Lei, P. (2017). An inter-frame dynamic double-threshold energy detection for spectrum sensing in cognitive radios. EURASIP Journal on Wireless Communication and Networking, 1, 2017.
Cabric, D., Tkachenko, A., & Brodersen, R.W. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of ACM international workshop on technology and policy for accessing spectrum (TAPAS), Boston (pp. 1–8).
Liang, Y. C., Zeng, Y., Peh, E., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transaction on Wireless Communication, 7(4), 1326–1337.
Atapattu, S., Tellambura, C., Jiang, H., & Rajatheva, N. (2015). Unified analysis of low-SNR energy detection and threshold selection. IEEE Transactions on Vehicular Technology, 64(11), 5006–5019.
MATLAB and Statistics Toolbox Release. (2010). The Math Works, Inc., Natick, MA.