Static-based early-damage detection using symbolic data analysis and unsupervised learning methods

João Santos1, Christian Crémona2, André Orcesi3, Paulo E. X. Silveira1, L. Calado4
1Department of Structures, Lisbon, Portugal
2Technical Center for Bridge Engineering, CEREMA, B.P. 214, Provins Cedex, 77487, France
3Materials and Structures Department, IFSTTAR, University Paris-Est, 14-20 Boulevard Newton, Champs sur Marne, Marne la Vallée Cedex2, F-77447, France
4Department of Civil Engineering, Technical University Lisbon, Lisbon, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hu X, Shenton H W. Damage identification based on dead load redistribution methodology. Journal of Structural Engineering, 2006, 132(8): 1254–1263

Teughels A, De Roeck G. Damage detection and parameter identification by finite element model updating. Rev Eur Génie Civ, 2005, 9(1): 109–158

Rytter A. Vibration Based Inspection of Civil Engineering Structures. Aalborg University, 1993

Doebling S W, Farrar C R, Prime M B, Shevitz D W. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Los Alamos, USA, 1996

Sohn H, Farrar C, Hemez F M, Shunk D D, Stinemates DW, Nadler B R. A Review of Structural Health Monitoring Literature: 1996–2001. Los Alamos, USA, 2004

Alvandi A, Crémona C. Assessment of vibration-based damage identification techniques. Journal of Sound and Vibration, 2006, 292(1–2): 179–202

Posenato D, Kripakaran P, Inaudi D, Smith I F C. Methodologies for model-free data interpretation of civil engineering structures. Computers & Structures, 2010, 88(7–8): 467–482

Nair K K, Kiremidjian A S, Law K H. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration, 2006, 291(1–2): 349–368

Moyo P, Brownjohn J M W. Detection of anomalous structural behaviour using wavelet analysis. Mechanical Systems and Signal Processing, 2002, 16(2–3): 429–445

E. Diday and Noirhomme-Fraiture. Symbolic Data Analysis and the SODAS Software. Chicester: John Wiley and Sons, 2008, 445

Cury A, Crémona C. Assignment of structural behaviours in longterm monitoring: Application to a strengthened railway bridge. Structural Health Monitoring, 2012, 11(4): 422–441

Oh C K, Sohn H. Damage diagnosis under environmental and operational variations using unsupervised support vector machine. Journal of Sound and Vibration, 2009, 325(1–2): 224–239

Hua X G, Ni Y Q, Ko J M, Wong K Y. Modeling of temperature — frequency correlation using combined principal component analysis and support vector regression technique. Journal of Computing in Civil Engineering, 2007, 21(2): 122–135

Zhou H F, Ni Y Q, Ko J M. Constructing input to neural networks for modelling temperature-caused modal variability: Mean temperatures, effective temperatures, and principal components of temperatures. Engineering Structures, 2010, 32(6): 1747–1759

Mata J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, 2011, 33(3): 903–910

Ni Y Q, Hua X G, Fan K Q, Ko J M. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Engineering Structures, 2005, 27(12): 1762–1773

Posenato D. Model-Free Data Interpretation for Continuous Monitoring of Complex Structures. École Polytechnique Fédérale de Lausanne, 2009

Cury A. Téchniques D’Anormalité Appliquées a la Surveillance de Santé Structurale. Université Paris-Est, 2010

Yan A, Kerschen G, De Boe P, Golinval J C. Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mechanical Systems and Signal Processing, 2005, 19(4): 865–880

Bellino A, Fasana A, Garibaldi L, Marchesiello S Ã. PCA-based detection of damage in time-varying systems. Mechanical Systems and Signal Processing, 2010, 24(7): 2250–2260

Zhou H F, Ni Y Q, Ko J M. Structural damage alarming using autoassociative neural network technique: Exploration of environmenttolerant capacity and setup of alarming threshold. Mechanical Systems and Signal Processing, 2011, 25(5): 1508–1526

Hsu T Y, Loh C H. Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Structural Control and Health Monitoring, 2010, 17(3): 338–354

Mujica L, Rodellar J, Fernandez A, Guemes A. Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Structural Health Monitoring, 2011, 10(5): 539–553

da Silva S, Dias Júnior M, Lopes Junior V, Brennan M J. Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 2008, 22(7): 1636–1649

Sohn H, Kim S D, Harries K. Reference-Free Damage Classification Based on Cluster Analysis. Comput Civ Infrastruct Eng, 2008, 23(5): 324–338

Cury A, Crémona C, Diday E. Application of symbolic data analysis for structural modification assessment. Engineering Structures, 2010, 32(3): 762–775

Santos J, Orcesi A D, Silveira P, Guo W. Real time assessment of rehabilitation works under operational loads. In: Proceedings of the ICDS12 — International Conference on Durable Structures: From construction to rehabilitation. 2012

Hua X G, Ni Y Q, Chen Z Q, Ko J M. Structural damage detection of cable-stayed bridges using changes in cable forces and model updating. Journal of Structural Engineering, 2009, 135(9): 1093–1106

Hu X, Shenton H W III. Damage identification based on dead load redistribution effect of measurement error. Journal of Structural Engineering, 2006, 132(8): 1264–1273

Jolliffe I T. Principal Component Analysis. 2nd ed. Aberdeen: Springer, 2002, 518

Billard L, Diday E. Symbolic Data Analysis. Chichester: John Wiley and Sons, 2006, 52(2): 321

Theodoridis S, Koutroumbas K. Pattern Recognition. 4th ed. London: Elsevier, 2009, 961

Ichino M, Yaguchi H. Generalized Minkowski metrics for mixed feature-type data analysis. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 698–708

Gowda K C, Diday E. Symbolic clustering using a new dissimilarity measure. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 24(6): 567–578

Hastie T. The Elements of Statistical Learning, Data Mining, Inference and Prediction. 2nd ed. Stanford, USA: Springer, 2011, 763

Milligan G, Cooper M. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 1985, 50(2): 159–179

Santos J, Silveira P. A SHM framework comprising real time data validation. In: Proceedings of IALCCE 2012-3rd International Symposium on Life Cycle Civil engineering. 2012, 2

Santos J, Silveira P, Santos L O, Calado L. Monitoring of road structures—real time acquisition and control of data. In: Proceedings of the 16th IRF World Road Meeting. Lisbon, May, 2010

Santos J, Orcesi A D, Silveira P, Pina C. Damage Detection under Environmental and Operational Loads on Large Span Bridges. In: V Congresso brasileiro de Pontes e Estruturas — Soluções Inovadores para Projeto. Execuçao e Manutençao, 2012

Caetano E, Cunha Á, Gattulli V, Lepidi M. Cable-deck dynamic interactions at the international Guadiana Bridge on-site measurements and finite element modelling. Structural Control and Health Monitoring, 2008, 15(3): 237–264

Massey F J Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 1951, 46(253): 68–78

Jackson J E. A User’s Guide to Principal Components. Wiley-Interscience, 1991, 43(6): 641

Jackson D. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 1993, 74(8): 2204–2214