Hyperspaces of Banach Spaces with the Attouch—Wets Topology

Set-Valued Analysis - Tập 12 - Trang 329-344 - 2004
Katsuro Sakai1, Masato Yaguchi1
1Institute of Mathematics, University of Tsukuba, Tsukuba-City, Japan

Tóm tắt

Let X be an infinite-dimensional Banach space with weight τ. By Cld AW (X), we denote the hyperspace of nonempty closed sets in X with the Attouch—Wets topology. By Fin AW (X), Comp AW (X) and Bdd AW (X), we denote the subspaces of Cld AW (X) consisting of finite sets, compact sets and bounded closed sets, respectively. In this paper, it is proved that Fin AW (X)≈Comp AW (X)≈ℓ2(τ)×ℓ2 f ℓandℓBdd AW (X)≈ℓ2(2τ)×ℓ2 f where ≈ means ‘is homeomorphic to’, ℓ2(τ) is the Hilbert space with weight τ (ℓ2(ℵ0)=ℓ2 the separable Hilbert space) and ℓ2 f ={(x i ) iεN εℓ2∣x i =0 except for finitely many iεN}.

Tài liệu tham khảo

Banakh, T.: Characterization of spaces admitting a homotopy dense embedding into a Hilbert manifold, Topology Appl. 86 (1998), 123–131. Banakh, T., Kurihara, M. and Sakai, K.: Hyperspaces of normed linear spaces with the Attouch-Wets topology, Set-Valued Anal. 11 (2003), 21–36. Beer, G.: Topologies on Closed and Closed Convex Sets, MIA 268, Kluwer Acad. Publ., Dordrecht, 1993. Bessaga, C. and Pełzyński, A.: Selected Topics in Infinite-Dimensional Topology, MM 58, Polish Sci. Publishers, Warsaw, 1975. Bestvina, M. and Mogilski, J.: Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313. Dugundji, J.: Topology, Allyn and Bacon, Inc., Boston, 1966. Engelking, R.: General Topology (Revised and complete edition), Sigma Ser. Pure Math. 6, Heldermann Verlag, Berlin, 1989. Henderson, D. W.: Corrections and extensions of two papers about infinite-dimensional manifolds, Gen. Topology Appl. 1 (1971), 321–327. Kubiś, W., Sakai, K. and Yaguchi, M.: Hyperspaces of separable Banach spaces with the Wijsman topology, Preprint. Megginson, R. E.: An Introduction to Banach Space Theory, Grad. Texts Math. 183, Springer, New York, 1998. van Mill, J.: Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989. Sakai, K.: The completions of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan 52 (2000), 835–846. Sakai, K. and Yaguchi, M.: Characterizing manifolds modeled on certain dense subspaces of non-separable Hilbert spaces, Tsukuba J. Math. 27 (2003), 143–159. Toruńczyk, H.: Concerning locally homotopy negligible sets and characterization of ℓ2-manifolds, Fund. Math. 101 (1978), 93–110. Toruńczyk, H.: Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247–262. Toruńczyk, H.: A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.