X-ray Based Robotic E-Waste Fractionation for Improved Material Recovery
Tóm tắt
Small handheld battery-powered devices contain complex material combinations. Current recycling methods achieve low recycling rates for these materials. For a more efficient recycling, fractionation of the devices according to the material composition before a mechanical shredding is helpful. However, this requires either manual disassembly or knowledge of the internal structure of the devices, which is not provided by the manufactures. Since manual disassembly is not economical, due to high labour costs, another methodology is needed. With the help of X-ray technology, the internal structure of the devices can be exposed and analysed without opening them manually. With the obtained data, a fractionation strategy can be generated to perform a robotised fractionation with a high pressure waterjet cutter, allowing higher recycling rates. Which is achieved by a reduction of the material complexity of each individual fraction, and the avoidance of inseparable material mixtures. Additionally complex fractions can be treated in specialised recycling facilities where processes are applied economically for a fraction of the device compared to the entire unit.
Tài liệu tham khảo
Bilitewski B, Wagner J, Reichenbach J (2017) Bewährte Verfahren zur kommunalen Abfallbewirtschaftung: Informationssammlung über Ansätze zur nachhaltigen Gestaltung der kommunalen Abfallbewirtschaftung und dafür geeignete Technologien und Ausrüstungen. Federal Environment Agency, Dessau-Roßlau. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-05-30_texte_39-2018-verfahren-kommunale-abfallwirtschaft_0.pdf
Blengini G, EL Latunussa C, Eynard U, Torres de Matos C, Wittmer D, Georgitzikis K, Pavel C, Carrara S, Mancini L, Unguru M, Blagoeva D, Mathieux F, Pennington D (2020) Study on the EU’s list of Critical Raw Materials. Publications Office of the European Union, Luxembourg. https://doi.org/10.2873/11619
Bruns S, Dinse M (2018) Brandschutz im Umgang mit gebrauchten Lithium-Ionen-Batterien im Recyclingbetrieb. Recycling und Rohstoffe 11. Edition. Thomé-Kozmiensky Verlag, Neuruppin. ISBN 978-3-944310-40-4. https://www.vivis.de/wp-content/uploads/RuR11/2018_RuR_601-614_Dinse
Duddek M, Freitas Seabra da Rocha S (2022) Robotized Pre-recycling for Improved Material Recovery. In: Leal Filho W, Azul AM, Doni F, Salvia AL (eds) Handbook of Sustainability Science in the Future. https://doi.org/10.1007/978-3-030-68074-9_71-1. Springer, Cham
European Union (2012) Directive 2012/19/eu of the european parliament and of the council of 4 july 2012 on waste electrical and electronic equipment (weee) (recast). https://eur-lex.europa.eu/eli/dir/2012/19/2018-07-04
Forti V, Baldé C.P, Kuehr R, Bel G The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam, https://ewastemonitor.info/wp-content/uploads/2020/11/GEM2020defjuly1low.pdf
Garbarino E, Ardente F, Blagoeva D (2018) Report on critical raw materials and the circular economy. European Commission, Joint Research Centre, Brussels. https://doi.org/10.2873/331561
Handke V, Hross M, Bliklen R, Jepsen D, Rödig L (2019) Recycling im Zeitalter der Digitalisierung: Spezifische Recyclingziele für Metalle und Kunststoffe aus Elektrokleingeräten im ElektroG: Regulatorische Ansätze. NABU, Berlin. https://www.nabu.de/imperia/md/content/nabude/konsumressourcenmuell/190702_recycling_im_zeitalter_der_digitalisierung_endbericht.pdf
Hintzmann K, Ochs A, Osburg G (2010) Recycling stops greenhouse gases: The contribution of the recycling and water management industry to climate protection. BDE, BMU, UBA, Germany. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4050.pdf
Korthauer R (2013) Handbuch Lithium-IonenBatterien. Springer Vieweg, Berlin. ISBN 978-3-642-30652-5. https://doi.org/10.1007/978-3-642-30653-2
Kurth P, Oexle A, Faulstich M (2018) Praxishandbuch der Kreislauf- und Rohstoffwirtschaft. Springer Vieweg, Wiesbaden. ISBN 978-3-658-17044-8. https://doi.org/10.1007/978-3-658-17045-5
Lecoq P, Gektin A, Korzhik M (2017) Inorganic Scintillators for Detector System Physical Principles and Crystal Engineering. Springer International, Switzerland. https://doi.org/10.1007/978-3-319-45522-8
MacDonald C (2017) An Introduction to X-Ray Physics, Optics and Applications. Princeton University Press, Princeton. https://doi.org/10.1515/9781400887736
Marscheider-Weidemann F, Langkau S, Naur S, Billaud M, Deubzer O, Eberling E, Erdmann L, Haendel M, Krail M, Loibl A, Maisel F, Marwede M, Neef C, Neuwirth M, Rostek L, Rückschloss J, Shirinzadeh S, Stijepic D, Tercero Espinoza L, Tippner M (2021) Rohstoffe für Zukunftstechnologien 2021: DERA Rohrstoffinfomartionen. On behalf of the German Raw Materials Agency at the Federal Institute for Geosciences and Natural Resources, Berlin. ISBN 978-3-948532-47-5. https://www.deutsche-rohstoffagentur.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/rohstoffinformationen-50nformationen/rohstoffinformationen-50.pdf
Martens H, Goldmann D (2016) Recyclingtechnik: Fachbuch für Lehre und Praxis. Springer Vieweg, Wiesbaden. ISBN 978-3-658-02785-8. https://doi.org/10.1007/978-3-658-02786-5
Osterloh K, Zscherpel U, Ewert U, Weiss P (2003) Einsatzmöglichkeiten mobiler Röntgenblitzröhren: DGZfP-Jahrestagung. 2003 ZfP in Anwendung, Entwicklung und Forschung. DGZfP, Mainz. https://www.ndt.net/article/dgzfp03/papers/p08/p08.htm
Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics. IEE, 9 edition. https://doi.org/10.1109/TSMC.1979.4310076
Peiró L., Nuss P, Mathieux F, Blengini G (2018) Towards Recycling Indicators based on EU flows and Raw Materials System Analysis data: Supporting the EU-28 Raw Materials and Circular Economy policies through RMIS. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/092885
Robert L (2020) Verbesserung des Recyclings von Haushaltskleingeräten im Hinblick auf strategische Metalle durch ein bestmögliches Behandlungs- und Zerlegesystem. Recycling und Sekundärrohstoffe 13. Edition. Thomé-Kozmiensky Verlag, Neuruppin. ISBN 978-3-944310-51-0. https://www.vivis.de/wp-content/uploads/RuR13/2020_RuR_366-379_Robert.pdf
Sander K, Marscheider-Weidemann F, Wilts H, Hobohm J, Harfeil T, Heymann R (2019) Abfallwirtschaftliche Produktverantwortung unter Ressourcenschutzaspekten. On behalf of the Federal Environment Agency, Dessau-Roßlau. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-05-24_texte_52-2019_repro.pdf
Sthian J (1999) Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge. ISBN 978-0-521-64557-7
Zeller T, Birkenfeld S, Keich O, Nawothnig B, Henning S (2016) Demontagefarbik im urbanen Raum: Konzeption und Planung. CUTEC, Clausthal. https://um.baden-wuerttemberg.de/fileadmin/redaktion/m-um/intern/Dateien/Dokumente/6_Wirtschaft/Ressourceneffizienz_und_Umwelttechnik/Abschlussbericht_Demontagefabrik_II.pdf