Parabolic De Giorgi classes of order p and the Harnack inequality

Springer Science and Business Media LLC - Tập 26 - Trang 379-399 - 2006
Ugo Gianazza1, Vincenzo Vespri2
1Dipartimento di Matematica “F. Casorati”, Università di Pavia, Pavia, Italy
2Dipartimento di Matematica “U. Dini”, Università di Firenze, Firenze, Italy

Tóm tắt

We define suitable homogeneous parabolic De Giorgi classes of order p and show that in this context a Harnack inequality holds with a time gap of order ρ p .

Tài liệu tham khảo

Bombieri, E.: Theory of minimal surfaces and a counterexample to the Bernstein conjecture in high dimensions. Mimeographed Notes of Lectures held at Courant Institute, New York University (1970) Bombieri, E., Giusti, E.: Harnack's inequality for elliptic differential equations on minimal surfaces. Inventiones Math. 15, 26–46 (1972) DeGiorgi, E.: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Mem. Acc. Sci. Torino, Cl. Sc. Fis. Mat. Nat. 3, 25–43 (1957) DiBenedetto, E.: Harnack estimates in certain function classes. Atti. Sem. Mat. Fis. Univ. Modena 37, 173–182 (1989) DiBenedetto, E.: Degenerate Parabolic Equations. Springer Verlag, Series Universitext, New York (1993) DiBenedetto, E.: Real Analysis. Birkhäuser Verlag (2002) DiBenedetto, E., Gianazza, U., Vespri, V.: Local Clustering of the Non-Zero Set of Functions in W 1,1 (Kρ). preprint (2005) DiBenedetto, E., Trudinger, N.S.: Harnack inequalities for quasi-minima of variational integrals. Ann. Inst. Henri Poincaré 1, 295–308 (1984) DiBenedetto, E., Urbano, J.M., Vespri, V.: Current issues on singular and degenerate evolution equations. vol. I, pp. 169–286. North-Holland, Amsterdam (2004) DiBenedetto, E., Vespri, V.: On the singular equation β (u) t = Δu. Arch. Rat. Mech. Anal. 132(3), 247–309 (1995) Fabes, E.B., Garofalo, N.: Parabolic B.M.O. and Harnack's Inequality. Proc. A.M.S. 95, 63–69 (1985) Fabes, E.B., Stroock, D.W.: A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 327–338 (1986) Giaquinta, M., Giusti, E.L Quasi-Minima. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 1, 79–107 (1984) Giusti, E.: Metodi diretti nel Calcolo delle Variazioni. Unione Matematica Italiana, Bologna (1994) Ladyzhenskaja, O.A., Solonnikov, V.A., Ural'tzeva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Math. Mono, vol. 23. Providence RI, USA (1968) Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc., River Edge, NJ (1996) Moser, J.: A harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17, 101–134 (1964) Moser, J.: On a pointwise estimate for parabolic differential equations. Comm. Pure Appl. Math. 24, 727–740 (1971) Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958) Saloff-Coste, L.: Aspects of Sobolev—Type Inequalities. London Mathematical Society Lecture Notes Series, #289 (2002) Wang, G.: Harnack inequalities for functions in the De Giorgi parabolic classes. Lect. Notes Math. 1306, 182–201 (1989) Wang, G.L., Sun, A.X.: Weak Harnack inequality for functions from class B 2 and application to parabolic Q-minima. Chinese J. Contemp. Math. 14, 75–84 (1993) Wieser, W.: Parabolic Q-minima and minimal solutions to variational flows. Manuscripta Math. 59, 63–107 (1987) Zhou, S.L.: On the local behaviour of parabolic Q-minima. J. Partial Diff. Eq. 6, 255–272 (1993) Zhou, S.L.: Parabolic Q-minima and their application. J. Partial Diff. Eq. 7, 289–322 (1994)