STRING v9.1: protein-protein interaction networks, with increased coverage and integration

Nucleic Acids Research - Tập 41 Số D1 - Trang D808-D815
Andrea Franceschini1, Damian Szklarczyk2, Sune Pletscher-Frankild2, Michael Kuhn2, Milan Simonovic2, Alexander Röth2, Jianyi Lin2, Pablo Mínguez2, Peer Bork2, Christian von Mering2, Lars Juhl Jensen2
1Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics University of Zurich Switzerland
2SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chothia, 1992, Proteins. One thousand families for the molecular biologist, Nature, 357, 543, 10.1038/357543a0

Wolf, 2000, Estimating the number of protein folds and families from complete genome data, J.Mol. Biol., 299, 897, 10.1006/jmbi.2000.3786

Aloy, 2004, Ten thousand interactions for the molecular biologist, Nature Biotechnol., 22, 1317, 10.1038/nbt1018

Huynen, 2000, Predicting protein function by genomic context: quantitative evaluation and qualitative inferences, Genome Res., 10, 1204, 10.1101/gr.10.8.1204

Eisenberg, 2000, Protein function in the post-genomic era, Nature, 405, 823, 10.1038/35015694

Gonzalez, 2011, Contextual analysis of RNAi-based functional screens using interaction networks, Bioinformatics, 27, 2707, 10.1093/bioinformatics/btr469

Simpson, 2012, Genome-wide RNAi screening identifies human proteins with a regulatory function in the early secretory pathway, Nature Cell Biol., 14, 764, 10.1038/ncb2510

Moreau, 2011, Genome-wide RNAi screens identify genes required for Ricin and PE intoxications, Dev. Cell, 21, 231, 10.1016/j.devcel.2011.06.014

Kaplow, 2009, RNAiCut: automated detection of significant genes from functional genomic screens, Nat. Methods, 6, 476, 10.1038/nmeth0709-476

Goh, 2012, How advancement in biological network analysis methods empowers proteomics, Proteomics, 12, 550, 10.1002/pmic.201100321

Oppermann, 2012, Combination of chemical genetics and phosphoproteomics for kinase signaling analysis enables confident identification of cellular downstream targets, Mol. Cell. Proteomics, 11, 10.1074/mcp.O111.012351

Olsson, 2012, Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry, Mol. Cell. Proteomics, 11, 342, 10.1074/mcp.M111.016238

Lee, 2011, Prioritizing candidate disease genes by network-based boosting of genome-wide association data, Genome Res., 21, 1109, 10.1101/gr.118992.110

Moreau, 2012, Computational tools for prioritizing candidate genes: boosting disease gene discovery, Nat. Rev. Genet., 13, 523, 10.1038/nrg3253

Piro, 2012, Computational approaches to disease-gene prediction: rationale, classification and successes, FEBS J., 279, 678, 10.1111/j.1742-4658.2012.08471.x

Stark, 2011, The BioGRID interaction database: 2011 update, Nucleic Acids Res., 39, D698, 10.1093/nar/gkq1116

Kerrien, 2012, The IntAct molecular interaction database in 2012, Nucleic Acids Res., 40, D841, 10.1093/nar/gkr1088

Salwinski, 2004, The database of interacting proteins: 2004 update, Nucleic Acids Res., 32, D449, 10.1093/nar/gkh086

Licata, 2012, MINT, the molecular interaction database: 2012 update, Nucleic Acids Res., 40, D857, 10.1093/nar/gkr930

Goll, 2008, MPIDB: the microbial protein interaction database, Bioinformatics, 24, 1743, 10.1093/bioinformatics/btn285

Goel, 2012, Human protein reference database and human proteinpedia as resources for phosphoproteome analysis, Mol. Biosyst., 8, 453, 10.1039/C1MB05340J

Croft, 2011, Reactome: a database of reactions, pathways and biological processes, Nucleic Acids Res., 39, D691, 10.1093/nar/gkq1018

Warde-Farley, 2010, The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 38, W214, 10.1093/nar/gkq537

Kamburov, 2011, ConsensusPathDB: toward a more complete picture of cell biology, Nucleic Acids Res., 39, D712, 10.1093/nar/gkq1156

Niu, 2010, Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D, Bioinformatics, 26, 111, 10.1093/bioinformatics/btp602

Hu, 2009, VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology, Nucleic Acids Res., 37, W115, 10.1093/nar/gkp406

Elefsinioti, 2011, Large-scale de novo prediction of physical protein-protein association, Mol. Cell. Proteomics, 10, 10.1074/mcp.M111.010629

Patil, 2011, HitPredict: a database of quality assessed protein-protein interactions in nine species, Nucleic Acids Res., 39, D744, 10.1093/nar/gkq897

Balaji, 2012, IMID: integrated molecular interaction database, Bioinformatics, 28, 747, 10.1093/bioinformatics/bts010

Wong, 2012, IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks, Nucleic Acids Res., 40, W484, 10.1093/nar/gks458

Szklarczyk, 2011, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Res., 39, D561, 10.1093/nar/gkq973

Jensen, 2009, STRING 8–a global view on proteins and their functional interactions in 630 organisms, Nucleic Acids Res., 37, D412, 10.1093/nar/gkn760

Powell, 2012, eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges, Nucleic Acids Res., 40, D284, 10.1093/nar/gkr1060

Saric, 2006, Extraction of regulatory gene/protein networks from Medline, Bioinformatics, 22, 645, 10.1093/bioinformatics/bti597

Minguez, 2012, Deciphering a global network of functionally associated post-translational modifications, Mol. Syst. Biol., 8, 599, 10.1038/msb.2012.31

Thornton, 1999, Protein folds, functions and evolution, J. Mol. Biol., 293, 333, 10.1006/jmbi.1999.3054

Koonin, 2002, The structure of the protein universe and genome evolution, Nature, 420, 218, 10.1038/nature01256

Zhang, 2010, Protein interface conservation across structure space, Proc. Natl Acad. Sci. USA, 107, 10896, 10.1073/pnas.1005894107

Qian, 2011, Measuring the evolutionary rate of protein-protein interaction, Proc. Natl Acad. Sci. USA, 108, 8725, 10.1073/pnas.1104695108

Walhout, 2000, Protein interaction mapping in C. elegans using proteins involved in vulval development, Science, 287, 116, 10.1126/science.287.5450.116

Caspi, 2008, The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases, Nucleic Acids Res., 36, D623, 10.1093/nar/gkm900

Teichmann, 2001, The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli, J. Mol. Biol., 311, 693, 10.1006/jmbi.2001.4912

Conant, 2008, Turning a hobby into a job: how duplicated genes find new functions, Nat. Rev. Genet., 9, 938, 10.1038/nrg2482

Koonin, 2005, Orthologs, paralogs, and evolutionary genomics, Ann. Rev. Genet., 39, 309, 10.1146/annurev.genet.39.073003.114725

Altenhoff, 2012, Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs, PLoS Comput. Biol., 8, e1002514, 10.1371/journal.pcbi.1002514

von Mering, 2005, STRING: known and predicted protein-protein associations, integrated and transferred across organisms, Nucleic Acids Res., 33, D433, 10.1093/nar/gki005

Tatusov, 2000, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res., 28, 33, 10.1093/nar/28.1.33

Ciccarelli, 2006, Toward automatic reconstruction of a highly resolved tree of life, Science, 311, 1283, 10.1126/science.1123061

Huang, 2009, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 37, 1, 10.1093/nar/gkn923

Khatri, 2012, Ten years of pathway analysis: current approaches and outstanding challenges, PLoS Comput. Biol., 8, e1002375, 10.1371/journal.pcbi.1002375

Huang, 2009, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4, 44, 10.1038/nprot.2008.211

Forbes, 2011, COSMIC: mining complete cancer genomes in the Catalogue of somatic mutations in cancer, Nucleic Acids Res., 39, D945, 10.1093/nar/gkq929

Rivals, 2007, Enrichment or depletion of a GO category within a class of genes: which test?, Bioinformatics, 23, 401, 10.1093/bioinformatics/btl633

Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Statist. Soc. B, 57, 289, 10.1111/j.2517-6161.1995.tb02031.x

Maslov, 2002, Specificity and stability in topology of protein networks, Science, 296, 910, 10.1126/science.1065103

Minguez, 2009, SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks, Nucleic Acids Res., 37, W109, 10.1093/nar/gkp402

Pradines, 2005, Analyzing protein lists with large networks: edge-count probabilities in random graphs with given expected degrees, J. Comput. Biol., 12, 113, 10.1089/cmb.2005.12.113

Apweiler, 2011, Ongoing and future developments at the Universal Protein Resource, Nucleic Acids Res., 39, D214, 10.1093/nar/gkq1020

Letunic, 2012, SMART 7: recent updates to the protein domain annotation resource, Nucleic Acids Res., 40, D302, 10.1093/nar/gkr931

Kiefer, 2009, The SWISS-MODEL Repository and associated resources, Nucleic Acids Res., 37, D387, 10.1093/nar/gkn750