Impact of Gd substitution on the structure, hyperfine interactions, and magnetic properties of Sr hexaferrites
Tài liệu tham khảo
Pullar, 2012, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001
Dmour, 2020, Preparation and characterization of rare earth-zinc substituted X-type hexaferrites, J. Alloys Compd., 836, 155396, 10.1016/j.jallcom.2020.155396
Stergiou, 2010, Dielectric and magnetic properties of new rare-earth substituted Bahexaferrites in the 2–18 GHz frequency range, J. Magn. Magn Mater., 322, 1532, 10.1016/j.jmmm.2009.07.082
Slimani, 2021, Investigation of AC susceptibility, dielectric and electrical properties of Tb–Tm co-substituted M-type Sr hexaferrites, Mater. Chem. Phys., 260, 124162, 10.1016/j.matchemphys.2020.124162
Slimani, 2020, Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach, Mater. Chem. Phys., 253, 123324, 10.1016/j.matchemphys.2020.123324
Nikmanesh, 2020, Erbium-chromium substituted strontium hexaferrite particles: characterization of the physical and Ku-band microwave absorption properties, Mater. Sci. Eng. B, 262, 114796, 10.1016/j.mseb.2020.114796
Zhang, 2006, Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89
Zou, 2008, Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials, Appl. Phys. Lett., 93, 261115, 10.1063/1.3062854
Qin, 2013, Ferromagnetic microwires enabled multifunctional composite materials, Prog. Mater. Sci., 58, 183, 10.1016/j.pmatsci.2012.06.001
Zhang, 2021, Influence of La-Nb co-substituted Sr ferrite on Microstructure, spectrum and magnetic properties of hexaferrites, J. Alloys Compd., 871, 159563, 10.1016/j.jallcom.2021.159563
Yasmina, 2019, Structural and magnetic studies of Ce-Zn doped M-type SrFe12O19 hexagonal ferrite synthesized by sol-gel auto-combustion method, Ceram. Int., 45, 462, 10.1016/j.ceramint.2018.09.190
Almessiere, 2020, Tb3+ substituted strontium hexaferrites: structural, magnetic and optical investigation and cation distribution, J. Rare Earths, 38, 402, 10.1016/j.jre.2019.06.007
Sharma, 2021, Effect of Gd3+ substitution on the structural and magnetic properties of barium hexaferrite nanomaterials, Mater. Today, 44, 2587
Ashrafa, 2019, Magnetic and optical properties of Gd-Tl substituted M-type barium hexaferrites synthesized by co-precipitation technique, Curr. Appl. Phys., 19, 506, 10.1016/j.cap.2019.02.005
Singh, 2015, Remarkable magnetization with ultra-low loss BaGdxFe12-xO19 nanohexaferrites for applications up to C-band, J. Magn. Magn Mater., 378, 478, 10.1016/j.jmmm.2014.11.071
Hu, 2020, Structure and magnetic performance of Gd substituted Sr-based hexaferrites, J. Alloys Compd., 820, 153180, 10.1016/j.jallcom.2019.153180
Nawazish, 2020, Impact of Gd doping on the dielectric and magnetic properties of (Sr-Ba)Fe12O19 nanoparticles, J. Alloys Compd., 822, 153561, 10.1016/j.jallcom.2019.153561
Yasmin, 2019, Structural and dielectric properties of Gd-Zn substituted Ca0.5Ba0.5Fe12O19 M-type hexa-ferrites synthesized via autocombustion method, J. Alloys Compd., 774, 962, 10.1016/j.jallcom.2018.10.044
Rezlescu, 2008, The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19, J. Alloys Compd., 451, 492, 10.1016/j.jallcom.2007.04.102
Liu, 2019, Microstructure and electromagnetic properties of oriented strontium W-type hexaferrite with rare-earth Gd3+ substitution, Ceram. Int., 45, 12205, 10.1016/j.ceramint.2019.03.126
Sadiq, 2015, Synthesis and characterization of rare earth elements substituted X-type hexagonal ferrites, Mater. Today, 2, 5462
Ashiq, 2015, Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol–gel combustion method, J. Magn. Magn Mater., 374, 173, 10.1016/j.jmmm.2014.08.020
Wagner, 1998, Preparation and crystal structure analysis of magnetoplumbite-type Baga12O19, J. Solid State Chem., 136, 120, 10.1006/jssc.1997.7681
Wudil, 2020, Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int., 46, 7253, 10.1016/j.ceramint.2019.11.219
Chen, 2020, 1048
Alna’washi, 2020, Magnetic study of M-type Co-Ti doped strontium hexaferrite nanocrystalline particles, J. Supercond. Nov. Magnetism, 33, 1423, 10.1007/s10948-019-05334-y
Jana, 2014, Enhanced resistive switching phenomena using low-positive-voltage format and self-compliance lrOx/GdOx/W cross-point memories, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-12
Solovyova, 2013, Mossbauer and X-ray diffraction study of Co2+–Si4+ substituted M-type barium hexaferrite BaFe12−2хСохSiхO19±γ, J. Magn. Magn Mater., 330, 72, 10.1016/j.jmmm.2012.10.035
Belous, 2006, Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co+Ti and Bi+Ti ions, Phys. Chem. B, 110, 26477, 10.1021/jp064628t
Campbell, 1994, Surfactant assisted ball-milling of barium ferrite, IEEE Trans. Magn., 30, 742, 10.1109/20.312394
Evans, 1987, 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M= Sr, Ba), J. Magn. Magn Mater., 67, 123, 10.1016/0304-8853(87)90728-1
Chawla, 2015, Effect of fuel on the synthesis, structural, and magnetic properties of M-type hexagonal SrFe12O19 nanoparticles, J. Supercond. Nov. Magnetism, 28, 1589, 10.1007/s10948-014-2893-5
Poudel, 2019, Effect of fuel on the synthesis, structural, and magnetic properties of M-type hexagonal SrFe12O19 nanoparticles, J. Alloys Compd., 802, 609, 10.1016/j.jallcom.2019.06.201
Nethala, 2018, Investigations on the structural, magnetic and Mossbauer properties of cerium doped strontium ferrite, Physica B, 550, 136, 10.1016/j.physb.2018.08.035
Chawla, 2015, Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCoxZrxFe(12−2x)O19, J. Magn. Magn Mater., 378, 84, 10.1016/j.jmmm.2014.10.168
Gütlich, 2011
Chawla, 2014, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12−2x)O19, J. Magn. Magn Mater., 350, 23, 10.1016/j.jmmm.2013.09.007
Almessiere, 2019, Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite, J. Magn. Magn Mater., 471, 124, 10.1016/j.jmmm.2018.09.054
Almessiere, 2020, Synthesis and characterization of Co1-2xNixMnxCeyFe2-yO4 nanoparticles, J. Rare Earths, 38, 188, 10.1016/j.jre.2019.07.005
Becker, 1939
Groessinger, 1981, A critical examination of the law of approach to saturation. I. Fit procedure, Phys. Status Solidi, 66, 665, 10.1002/pssa.2210660231
Almessiere, 2018, Structural and magnetic properties of Ce-doped strontium hexaferrite, Ceram. Int., 44, 9000, 10.1016/j.ceramint.2018.02.101
Ashiq, 2015, Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol-gel combustion method, J. Magn. Magn Mater., 374, 173, 10.1016/j.jmmm.2014.08.020
Pullar, 2012, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001
Wang, 2006, A study of Sm-substituted SrM magnets sintered using hydrothermally synthesised powders, J. Magn. Magn Mater., 298, 122, 10.1016/j.jmmm.2005.03.012
Kaur, 2017, Effect of Cu-Co-Zr doping on the properties of strontium hexaferrites synthesized by sol-gel auto-combustion method, J. Supercond. Nov. Magnetism, 30, 635, 10.1007/s10948-016-3835-1
Mudsainiyan, 2015, Study on structural and magnetic properties of nanosized M-type Ba-hexaferrites synthesized by urea assisted citrate precursor route, J. Alloys Compd., 645, 421, 10.1016/j.jallcom.2015.04.218
Ashraf, 2019, Magnetic and optical properties of Gd-Tl substituted M-type barium hexaferrites synthesized by co-precipitation technique, Curr. Appl. Phys., 19, 506, 10.1016/j.cap.2019.02.005
Jing, 2019, Hydrothermal synthesis and competitive growth of flake-like M-type strontium hexaferrite, RSC Adv., 9, 33388, 10.1039/C9RA06246G
Elansary, 2020, New nanosized Gd-Ho-Sm doped M-type strontium hexaferrite for water treatment application: experimental and theoretical investigations, RSC Adv., 10, 25239, 10.1039/D0RA04722H
Almessiere, 2020, Comparative study of sonochemically synthesized Co-Zr and Ni-Zr substituted Sr-hexaferrites: magnetic and structural investigations, J. Magn. Magn Mater., 497, 165996, 10.1016/j.jmmm.2019.165996
Almessiere, 2020, Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites, J. Solid State Chem., 286, 121310, 10.1016/j.jssc.2020.121310
Güner, 2020, Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites, Ceram. Int., 46, 4610, 10.1016/j.ceramint.2019.10.191
Shirk, 1969, Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals, J. Appl. Phys., 40, 1294, 10.1063/1.1657636
Ali, 2013, Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique, J. Alloys Compd., 550, 564, 10.1016/j.jallcom.2012.10.121
Jamalian, 2015, Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd, J. Electron. Mater., 44, 2856, 10.1007/s11664-015-3720-x
Khandani, 2019, An investigation of structural and magnetic properties of Ce–Nd doped strontium hexaferrite nanoparticles as a microwave absorbent, Mater. Chem. Phys., 235, 121722, 10.1016/j.matchemphys.2019.121722
Ahmad, 2015, Effects of Gd-substitutions on the microstructure, electrical and electromagnetic behavior of M-type hexagonal ferrites, J. Electron. Mater., 44, 2221, 10.1007/s11664-015-3671-2
Trukhanov, 2017, Magnetic properties and Mossbauer study of gallium doped M-type barium hexaferrites, Ceram. Int., 43, 12822, 10.1016/j.ceramint.2017.06.172
Doroftei, 2006, Heat-treatment influence on the microstructure and magnetic properties of rare-earth substituted SrFe12O19, Cryst. Res. Technol., 41, 1112, 10.1002/crat.200610731
Hu, 2020, Structure and magnetic performance of Gd substituted Sr-based hexaferrites, J. Alloys Compd., 820, 153180, 10.1016/j.jallcom.2019.153180
Almessiere, 2020, Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites, J. Rare Earths, 38, 265, 10.1016/j.jre.2019.04.018
Chen, 2005, Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems, Phys. Rev. B, 72, 214436, 10.1103/PhysRevB.72.214436
Almessiere, 2019, Morphology and magnetic traits of strontium nanohexaferrites: effects of manganese/yttrium co-substitution, J. Rare Earths, 37, 732, 10.1016/j.jre.2018.09.014
Almessiere, 2018, AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites, Ceram. Int., 44, 17749, 10.1016/j.ceramint.2018.06.242
Slimani, 2020, Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach, Mater. Chem. Phys., 253, 123324, 10.1016/j.matchemphys.2020.123324
Almessiere, 2019, AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites, Ceram. Int., 45, 10048, 10.1016/j.ceramint.2019.02.050