Impact of Gd substitution on the structure, hyperfine interactions, and magnetic properties of Sr hexaferrites

Ceramics International - Tập 47 - Trang 33853-33864 - 2021
M.A. Almessiere1,2, Y. Slimani1, M. Sertkol3, H. Gungunes4, Y.S. Wudil5, A. Demir Korkmaz6, A. Baykal7
1Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
2Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
3Department of Basic Science, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
4Department of Physics, Hitit University, 19030 Çevre Yolu Bulvarı-Çorum, Turkey
5Laser Research Group, Physics Department, King Fahd University of Petroleum & Minerals (KFUPM), Mailbox 5047, 31261, Dhahran, Saudi Arabia
6Department of Chemistry, Istanbul Medeniyet University, 34700, Uskudar-Istanbul, Turkey
7Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia

Tài liệu tham khảo

Pullar, 2012, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001 Dmour, 2020, Preparation and characterization of rare earth-zinc substituted X-type hexaferrites, J. Alloys Compd., 836, 155396, 10.1016/j.jallcom.2020.155396 Stergiou, 2010, Dielectric and magnetic properties of new rare-earth substituted Bahexaferrites in the 2–18 GHz frequency range, J. Magn. Magn Mater., 322, 1532, 10.1016/j.jmmm.2009.07.082 Slimani, 2021, Investigation of AC susceptibility, dielectric and electrical properties of Tb–Tm co-substituted M-type Sr hexaferrites, Mater. Chem. Phys., 260, 124162, 10.1016/j.matchemphys.2020.124162 Slimani, 2020, Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach, Mater. Chem. Phys., 253, 123324, 10.1016/j.matchemphys.2020.123324 Nikmanesh, 2020, Erbium-chromium substituted strontium hexaferrite particles: characterization of the physical and Ku-band microwave absorption properties, Mater. Sci. Eng. B, 262, 114796, 10.1016/j.mseb.2020.114796 Zhang, 2006, Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89 Zou, 2008, Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials, Appl. Phys. Lett., 93, 261115, 10.1063/1.3062854 Qin, 2013, Ferromagnetic microwires enabled multifunctional composite materials, Prog. Mater. Sci., 58, 183, 10.1016/j.pmatsci.2012.06.001 Zhang, 2021, Influence of La-Nb co-substituted Sr ferrite on Microstructure, spectrum and magnetic properties of hexaferrites, J. Alloys Compd., 871, 159563, 10.1016/j.jallcom.2021.159563 Yasmina, 2019, Structural and magnetic studies of Ce-Zn doped M-type SrFe12O19 hexagonal ferrite synthesized by sol-gel auto-combustion method, Ceram. Int., 45, 462, 10.1016/j.ceramint.2018.09.190 Almessiere, 2020, Tb3+ substituted strontium hexaferrites: structural, magnetic and optical investigation and cation distribution, J. Rare Earths, 38, 402, 10.1016/j.jre.2019.06.007 Sharma, 2021, Effect of Gd3+ substitution on the structural and magnetic properties of barium hexaferrite nanomaterials, Mater. Today, 44, 2587 Ashrafa, 2019, Magnetic and optical properties of Gd-Tl substituted M-type barium hexaferrites synthesized by co-precipitation technique, Curr. Appl. Phys., 19, 506, 10.1016/j.cap.2019.02.005 Singh, 2015, Remarkable magnetization with ultra-low loss BaGdxFe12-xO19 nanohexaferrites for applications up to C-band, J. Magn. Magn Mater., 378, 478, 10.1016/j.jmmm.2014.11.071 Hu, 2020, Structure and magnetic performance of Gd substituted Sr-based hexaferrites, J. Alloys Compd., 820, 153180, 10.1016/j.jallcom.2019.153180 Nawazish, 2020, Impact of Gd doping on the dielectric and magnetic properties of (Sr-Ba)Fe12O19 nanoparticles, J. Alloys Compd., 822, 153561, 10.1016/j.jallcom.2019.153561 Yasmin, 2019, Structural and dielectric properties of Gd-Zn substituted Ca0.5Ba0.5Fe12O19 M-type hexa-ferrites synthesized via autocombustion method, J. Alloys Compd., 774, 962, 10.1016/j.jallcom.2018.10.044 Rezlescu, 2008, The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19, J. Alloys Compd., 451, 492, 10.1016/j.jallcom.2007.04.102 Liu, 2019, Microstructure and electromagnetic properties of oriented strontium W-type hexaferrite with rare-earth Gd3+ substitution, Ceram. Int., 45, 12205, 10.1016/j.ceramint.2019.03.126 Sadiq, 2015, Synthesis and characterization of rare earth elements substituted X-type hexagonal ferrites, Mater. Today, 2, 5462 Ashiq, 2015, Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol–gel combustion method, J. Magn. Magn Mater., 374, 173, 10.1016/j.jmmm.2014.08.020 Wagner, 1998, Preparation and crystal structure analysis of magnetoplumbite-type Baga12O19, J. Solid State Chem., 136, 120, 10.1006/jssc.1997.7681 Wudil, 2020, Thermal conductivity of PLD-grown thermoelectric Bi2Te2.7Se0.3 films using temperature-dependent Raman spectroscopy technique, Ceram. Int., 46, 7253, 10.1016/j.ceramint.2019.11.219 Chen, 2020, 1048 Alna’washi, 2020, Magnetic study of M-type Co-Ti doped strontium hexaferrite nanocrystalline particles, J. Supercond. Nov. Magnetism, 33, 1423, 10.1007/s10948-019-05334-y Jana, 2014, Enhanced resistive switching phenomena using low-positive-voltage format and self-compliance lrOx/GdOx/W cross-point memories, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-12 Solovyova, 2013, Mossbauer and X-ray diffraction study of Co2+–Si4+ substituted M-type barium hexaferrite BaFe12−2хСохSiхO19±γ, J. Magn. Magn Mater., 330, 72, 10.1016/j.jmmm.2012.10.035 Belous, 2006, Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co+Ti and Bi+Ti ions, Phys. Chem. B, 110, 26477, 10.1021/jp064628t Campbell, 1994, Surfactant assisted ball-milling of barium ferrite, IEEE Trans. Magn., 30, 742, 10.1109/20.312394 Evans, 1987, 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M= Sr, Ba), J. Magn. Magn Mater., 67, 123, 10.1016/0304-8853(87)90728-1 Chawla, 2015, Effect of fuel on the synthesis, structural, and magnetic properties of M-type hexagonal SrFe12O19 nanoparticles, J. Supercond. Nov. Magnetism, 28, 1589, 10.1007/s10948-014-2893-5 Poudel, 2019, Effect of fuel on the synthesis, structural, and magnetic properties of M-type hexagonal SrFe12O19 nanoparticles, J. Alloys Compd., 802, 609, 10.1016/j.jallcom.2019.06.201 Nethala, 2018, Investigations on the structural, magnetic and Mossbauer properties of cerium doped strontium ferrite, Physica B, 550, 136, 10.1016/j.physb.2018.08.035 Chawla, 2015, Effect of site preferences on structural and magnetic switching properties of CO–Zr doped strontium hexaferrite SrCoxZrxFe(12−2x)O19, J. Magn. Magn Mater., 378, 84, 10.1016/j.jmmm.2014.10.168 Gütlich, 2011 Chawla, 2014, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12−2x)O19, J. Magn. Magn Mater., 350, 23, 10.1016/j.jmmm.2013.09.007 Almessiere, 2019, Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite, J. Magn. Magn Mater., 471, 124, 10.1016/j.jmmm.2018.09.054 Almessiere, 2020, Synthesis and characterization of Co1-2xNixMnxCeyFe2-yO4 nanoparticles, J. Rare Earths, 38, 188, 10.1016/j.jre.2019.07.005 Becker, 1939 Groessinger, 1981, A critical examination of the law of approach to saturation. I. Fit procedure, Phys. Status Solidi, 66, 665, 10.1002/pssa.2210660231 Almessiere, 2018, Structural and magnetic properties of Ce-doped strontium hexaferrite, Ceram. Int., 44, 9000, 10.1016/j.ceramint.2018.02.101 Ashiq, 2015, Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol-gel combustion method, J. Magn. Magn Mater., 374, 173, 10.1016/j.jmmm.2014.08.020 Pullar, 2012, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001 Wang, 2006, A study of Sm-substituted SrM magnets sintered using hydrothermally synthesised powders, J. Magn. Magn Mater., 298, 122, 10.1016/j.jmmm.2005.03.012 Kaur, 2017, Effect of Cu-Co-Zr doping on the properties of strontium hexaferrites synthesized by sol-gel auto-combustion method, J. Supercond. Nov. Magnetism, 30, 635, 10.1007/s10948-016-3835-1 Mudsainiyan, 2015, Study on structural and magnetic properties of nanosized M-type Ba-hexaferrites synthesized by urea assisted citrate precursor route, J. Alloys Compd., 645, 421, 10.1016/j.jallcom.2015.04.218 Ashraf, 2019, Magnetic and optical properties of Gd-Tl substituted M-type barium hexaferrites synthesized by co-precipitation technique, Curr. Appl. Phys., 19, 506, 10.1016/j.cap.2019.02.005 Jing, 2019, Hydrothermal synthesis and competitive growth of flake-like M-type strontium hexaferrite, RSC Adv., 9, 33388, 10.1039/C9RA06246G Elansary, 2020, New nanosized Gd-Ho-Sm doped M-type strontium hexaferrite for water treatment application: experimental and theoretical investigations, RSC Adv., 10, 25239, 10.1039/D0RA04722H Almessiere, 2020, Comparative study of sonochemically synthesized Co-Zr and Ni-Zr substituted Sr-hexaferrites: magnetic and structural investigations, J. Magn. Magn Mater., 497, 165996, 10.1016/j.jmmm.2019.165996 Almessiere, 2020, Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites, J. Solid State Chem., 286, 121310, 10.1016/j.jssc.2020.121310 Güner, 2020, Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites, Ceram. Int., 46, 4610, 10.1016/j.ceramint.2019.10.191 Shirk, 1969, Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals, J. Appl. Phys., 40, 1294, 10.1063/1.1657636 Ali, 2013, Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique, J. Alloys Compd., 550, 564, 10.1016/j.jallcom.2012.10.121 Jamalian, 2015, Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd, J. Electron. Mater., 44, 2856, 10.1007/s11664-015-3720-x Khandani, 2019, An investigation of structural and magnetic properties of Ce–Nd doped strontium hexaferrite nanoparticles as a microwave absorbent, Mater. Chem. Phys., 235, 121722, 10.1016/j.matchemphys.2019.121722 Ahmad, 2015, Effects of Gd-substitutions on the microstructure, electrical and electromagnetic behavior of M-type hexagonal ferrites, J. Electron. Mater., 44, 2221, 10.1007/s11664-015-3671-2 Trukhanov, 2017, Magnetic properties and Mossbauer study of gallium doped M-type barium hexaferrites, Ceram. Int., 43, 12822, 10.1016/j.ceramint.2017.06.172 Doroftei, 2006, Heat-treatment influence on the microstructure and magnetic properties of rare-earth substituted SrFe12O19, Cryst. Res. Technol., 41, 1112, 10.1002/crat.200610731 Hu, 2020, Structure and magnetic performance of Gd substituted Sr-based hexaferrites, J. Alloys Compd., 820, 153180, 10.1016/j.jallcom.2019.153180 Almessiere, 2020, Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites, J. Rare Earths, 38, 265, 10.1016/j.jre.2019.04.018 Chen, 2005, Superparamagnetism versus superspin glass behavior in dilute magnetic nanoparticle systems, Phys. Rev. B, 72, 214436, 10.1103/PhysRevB.72.214436 Almessiere, 2019, Morphology and magnetic traits of strontium nanohexaferrites: effects of manganese/yttrium co-substitution, J. Rare Earths, 37, 732, 10.1016/j.jre.2018.09.014 Almessiere, 2018, AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites, Ceram. Int., 44, 17749, 10.1016/j.ceramint.2018.06.242 Slimani, 2020, Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach, Mater. Chem. Phys., 253, 123324, 10.1016/j.matchemphys.2020.123324 Almessiere, 2019, AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites, Ceram. Int., 45, 10048, 10.1016/j.ceramint.2019.02.050