Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts

Korean Journal of Chemical Engineering - Tập 32 - Trang 1528-1541 - 2015
Xianhui Zhao1, Lin Wei1, James Julson1, Zhengrong Gu1, Yuhe Cao1
1Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, USA

Tóm tắt

Catalytic cracking of camelina oils to hydrocarbon fuels over ZSM-5 and ZSM-5 impregnated with Zn2+ (named bifunctional catalyst) was individually carried out at 500 °C using a tubular fixed-bed reactor. Fresh and used catalysts were characterized by ammonia temperature-programmed desorption (NH3-TPD), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and nitrogen isothermal adsorption/desorption micropore analyzer. The effect of catalysts on the yield rate and qualities of products was discussed. The loading of Zn2+ to ZSM-5 provided additional acid sites and increased the ratio of Lewis acid site to Brønsted acid site. BET results revealed that the surface area and pore volume of the catalyst decreased after ZSM-5 was impregnated with zinc, while the pore size increased. When using the bifunctional catalyst, the pH value and heating value of upgraded camelina oils increased, while the oxygen content and moisture content decreased. Additionally, the yield rate of hydrocarbon fuels increased, while the density and oxygen content decreased. Because of a high content of fatty acids, the distillation residues of cracking oils might be recycled to the process to improve the hydrocarbon fuel yield rate.

Tài liệu tham khảo

K. D. Maher and D.C. Bressler, Bioresour. Technol., 98, 2351 (2007). A. Demirbas and H. Kara, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28, 619 (2006). T. M. Rao, M. M. Clavero and M. Makkee, ChemSusChem., 3, 807 (2010). M. Chiappero, P. Do, S. Crossley, L. Lobban and D. Resasco, Fuel, 90, 1155 (2011). N. Zeeshan, X. Tang and W. Fei, Korean J. Chem. Eng., 26, 1528 (2009). H. Wang, S. Yan, S.O. Salley and K.Y. Simon Ng, Ind. Eng. Chem. Res., 51, 10066 (2012). J. Xu, J. Jiang, Y. Sun and J. Chen, Bioresour. Technol., 101, 9803 (2010). H. Zhang, Y. Cheng, T.P. Vispute, R. Xiao and G.W. Huber, Energy Environ. Sci., 4, 2297 (2011). J. Penzien, A. Abraham, J. A. Bokhoven, A. Jentys, T. E. Muller, C. Sievers and J. A. Lercher, J. Phys. Chem., 108, 4116 (2004). A. Demirbas, Energy Sources, 25, 457 (2003). Z. Y. Zakaria, J. Linnekoski and N. A. Amin, Chem. Eng., 207–208, 803 (2012). R. K. Sharma, M. Anand, B. S. Rana, R. Kumar, S.A. Farooqui, M. G. Sibi and A. K. Sinha, Catal. Today, 198, 314 (2012). H. Li, B. Shen, J. C. Kabalu and M. Nchare, Renew. Energy, 34, 1033 (2009). A. A. Boateng, C. A. Mullen and N. M. Goldberg, Energy Fuels, 24, 6624 (2010). A. E. Atabani, A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin and H. Fayaz, Renew. Sust. Energy Rev., 18, 211 (2013). X. Zhao, L. Wei, J. Julson and Y. Huang, Journal of Sustainable Bioenergy Systems, 4, 199 (2014). T. R. Carlson, J. Jae, Y. Lin, G.A. Tompsett and G. W. Huber, J. Catal., 2, 110 (2010). X. Zhao, L. Wei, J. Julson, Q. Qiao, A. Dubey and G. Anderson, N. Biotechnol., 32, 300 (2015). X. Ren, N. Li, J. Cao, Z. Wang, S. Liu and S. Xiang, Appl. Catal. A: Gen., 298, 144 (2006). R. Weingarten, G. A. Tompsett, W. C. Conner Jr. and G. W. Huber, J. Catal., 279, 174 (2011). A. Zheng, Z. Zhao, S. Chang, Z. Huang, H. Wu, X. Wang, F. He and H. Li, J. Mol. Catal. A: Chem., 383, 23 (2014). H. Jin, X. Wang, Z. Gu, J.D. Hoefelmeyer, K. Muthukumarappan and J. Julson, RSC Adv., 4, 14136 (2014). X. Zhao, L. Wei and J. Julson, AIMS Energy, 2, 193 (2014). Y. Huang, L. Wei, J. Julson, Y. Gao and X. Zhao, J. Anal. Appl. Pyrolysis, 111, 148 (2015). S. Bezergianni, S. Voutetakis and A. Kalogianni, Ind. Eng. Chem. Res., 48, 8402 (2009). D. L. Trimm, Appl. Catal. A: Gen., 212, 153 (2001). S. Kouva, J. Kanervo, F. Schüßler, R. Olindo, J.A. Lercher and O. Krause, Chem. Eng. Sci., 89, 40 (2013). A. M. Camiloti, S. L. Jahn, N. D. Velasco, L. F. Moura and D. Cardoso, Appl. Catal. A: Gen., 182, 107 (1999). G. Bagnasco, J. Catal., 159, 249 (1996). F. Lónyi and J. Valyon, Thermochim. Acta, 373, 53 (2001). N. Kumar, L. E. Lindfors and R. Byggningsbacka, Appl. Catal. A: Gen., 139, 189 (1996). S. Al-Khattaf, Appl. Catal. A: Gen., 231, 293 (2002). Y.C. Sharma, B. Singh and J. Korstad, Energy Fuels, 24, 3223 (2010). J. Jae, G. A. Tompsett, A. J. Foster, K. D. Hammond, S. M. Auerbath, R. F. Lobo and G. W. Huber, J. Catal., 279, 257 (2011). Y. Jiang, J. Juan, X. Meng, W. Cao, M. A. Yarmo and J. Zhang, Chem. Res. Chinese U., 23, 349 (2007). M. Khatamian and M. Irani, J. Iranian Chem. Soc., 6, 187 (2009). V. S. Yaliwal, S. R. Daboji, N. R. Banapurmath and P. G. Tewari, Int. J. Eng. Sci. Technol., 2, 5938 (2010). E. Santillan-Jimenez, T. Morgan, J. Lacny, S. Mohapantra and M. Crocker, Fuel, 103, 1010 (2013). A. C. Rustan and C. A. Drevon, Encyclopedia of Life Sciences, 1 (2005). H. Noureddini, B. C. Teoh and L. D. Clements, J. Am. Oil Chem. Soc., 69, 1189 (1992). H. Zhang, R. Xiao, H. Huang and G. Xiao, Bioresour. Technol., 100, 1428 (2009).