Systematic mapping on the evaluation of electrochemical CO2 conversion to fuels/chemicals/value-added products and way forward for breakthroughs in electrocatalysis

Scientific African - Tập 20 - Trang e01632 - 2023
Kayode Adesina Adegoke1, Solomon Olanrewaju Giwa2, Oyeladun Rhoda Adegoke3, Nobanathi Wendy Maxakato1
1Department of Chemical Sciences, University of Johannesburg, South Africa
2Department of Mechanical Engineering, Olabisi Onabanjo University, 112104, Ibogun, Nigeria
3Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria

Tài liệu tham khảo

Adegoke, 2020, Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: realities and prospects of Cu-based materials, Sustain. Mater. Technol., 25, e00200 Adegoke, 2020, Highly efficient formic acid and carbon dioxide electro-reduction to alcohols on indium oxide electrodes, Sustain. Energy Fuel., 4, 4030, 10.1039/D0SE00623H T.O.M.W. Ilson, N. Energy, T.O.M.W. Ilson, S. Rock, B.G. Survey, T.O.M.W. Ilson, S.A.S. Harma, C.O. Special, N. Energy, SPECIAL S q SECTION :, 1020423006 (2010) 148–149. Michael, 2010, Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations, Int. J. Greenh. Gas Control., 4, 659, 10.1016/j.ijggc.2009.12.011 Adegoke, 2022, Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques, Coord. Chem. Rev., 457, 10.1016/j.ccr.2021.214389 Adegoke, 2022, Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: functionalities, mechanistic, and technoeconomic aspects, Mater. Today Chem., 24 Cao, 2020, Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel, Angew. Chemie Int. Ed., 59, 15014, 10.1002/anie.202005577 Zhang, 2021, Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction, Nano Energy, 80, 10.1016/j.nanoen.2020.105504 Zhang, 2020, Mechanistic understanding of the electrocatalytic CO2 reduction reaction – New developments based on advanced instrumental techniques, Nano Today, 31, 10.1016/j.nantod.2019.100835 Da Silva Freitas, 2021, Electrocatalytic CO2 reduction on nanostructured metal-based materials: challenges and constraints for a sustainable pathway to decarbonization, J. CO2 Util., 50, 10.1016/j.jcou.2021.101579 Figueroa, 2008, Advances in CO2 capture technology-The U.S. Department of Energy's carbon sequestration program, Int. J. Greenh. Gas Control., 2, 9, 10.1016/S1750-5836(07)00094-1 Olajire, 2010, CO2 capture and separation technologies for end-of-pipe applications - a review, Energy, 35, 2610, 10.1016/j.energy.2010.02.030 Kim, 2017, Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network, Appl. Energy., 185, 916, 10.1016/j.apenergy.2016.10.012 MacDowell, 2010, An overview of CO2 capture technologies, Energy Environ. Sci., 3, 1645, 10.1039/c004106h Maginn, 2010, What to do with CO2, J. Phys. Chem. Lett., 1, 3478, 10.1021/jz101582c An, 2021, Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate, Renew. Sustain. Energy Rev., 143, 10.1016/j.rser.2021.110952 Resasco, 2020, Electrocatalytic CO2 reduction to fuels: progress and opportunities, Trend. Chem., 2, 825, 10.1016/j.trechm.2020.06.007 Sultan, 2021, Innovative strategies toward challenges in PV-powered electrochemical CO2 reduction, J. Energy Chem., 60, 410, 10.1016/j.jechem.2021.01.043 Zhang, 2020, Electrochemical CO2 reduction reaction on cost-effective oxide-derived copper and transition metal–nitrogen–carbon catalysts, Curr. Opin. Electrochem., 23, 65, 10.1016/j.coelec.2020.04.005 Adegoke, 2020 Chen, 2021, Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites, Appl. Surf. Sci., 544, 10.1016/j.apsusc.2021.148965 Adegoke, 2018, Photocatalytic conversion of CO2 using zno semiconductor by hydrothermal method, Pak. J. Anal. Environ. Chem., 19, 1, 10.21743/pjaec/2018.06.01 Wang, 2011, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703, 10.1039/c1cs15008a Huang, 2021, Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction, J. Energy Chem., 62, 71, 10.1016/j.jechem.2021.03.009 Ou, 2021, Mechanism for CO2 electroreduction into C2 products at the low overpotential: theoretical insights from an improved electrode/solution interface model, Surf. Sci., 705, 10.1016/j.susc.2020.121782 Laursen, 2021, CO2 electro-reduction on Cu3P: role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity, Electrochim. Acta., 391, 10.1016/j.electacta.2021.138889 Jiao, 2021, The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: advances, challenges, and opportunities, Nano Today, 36, 10.1016/j.nantod.2020.101028 Zhai, 2021, Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis, J. Energy Chem., 62, 43, 10.1016/j.jechem.2021.03.011 Olah, 2009, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487, 10.1021/jo801260f Olah, 2011, Anthropogenic chemical carbon cycle for a sustainable future, J. Am. Chem. Soc., 133, 12881, 10.1021/ja202642y Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A Zhi, 2021, Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene, J. CO2 Util., 50, 10.1016/j.jcou.2021.101594 Graves, 2011, Sustainable hydrocarbon fuels by recycling CO2 and H 2O with renewable or nuclear energy, Renew. Sustain. Energy Rev., 15, 1, 10.1016/j.rser.2010.07.014 Yu, 2008, Recent advances in CO2 capture and utilization, ChemSusChem, 1, 893, 10.1002/cssc.200800169 Jiang, 2010, Turning carbon dioxide into fuel, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368, 3343, 10.1098/rsta.2010.0119 Quadrelli, 2011, Carbon dioxide recycling: emerging large-scale technologies with industrial potential, ChemSusChem, 4, 1194, 10.1002/cssc.201100473 Jitaru, 1997, Electrochemical reduction of carbon dioxide on flat metallic cathodes, J. Appl. Electrochem., 27, 875, 10.1023/A:1018441316386 Kuhl, 2014, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces, J. Am. Chem. Soc., 136, 14107, 10.1021/ja505791r Chueh, 2010, High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria, Science (80-.), 330, 1797, 10.1126/science.1197834 Zhang, 2013, A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources, Appl. Energy., 108, 1, 10.1016/j.apenergy.2013.03.019 Jiang, 2016, Catalytic function of IrOx in the two-step thermochemical CO2-splitting reaction at high temperatures, ACS Catal., 6, 1172, 10.1021/acscatal.5b01774 Castro, 2018, Photoelectrochemical reactors for CO2 utilization, ACS Sustain. Chem. Eng., 6, 15877, 10.1021/acssuschemeng.8b03706 Sahara, 2016, Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode, J. Am. Chem. Soc., 138, 14152, 10.1021/jacs.6b09212 Hu, 2018, Designing effective Si/Ag interface via controlled chemical etching for photoelectrochemical CO2 reduction, J. Mater. Chem. A., 6, 21906, 10.1039/C8TA05420G Costentin, 2013, Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A De Luna, 2018, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction, Nat. Catal., 1, 103, 10.1038/s41929-017-0018-9 Liu, 2016, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537, 382, 10.1038/nature19060 Yang, 2019, Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters, J. Energy Chem., 37, 93, 10.1016/j.jechem.2018.12.004 Alotaibi, 2016, Photochemical carbon dioxide reduction on Mg-doped Ga(In)N nanowire arrays under visible light irradiation, ACS Energy Lett., 1, 246, 10.1021/acsenergylett.6b00119 Michl, 2011, Photochemical CO2 reduction: towards an artificial leaf?, Nat. Chem., 3, 268, 10.1038/nchem.1021 Wu, 2017, CO2 reduction: from the electrochemical to photochemical approach, Adv. Sci., 4, 1, 10.1002/advs.201700194 Yuan, 2009, Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid, Electrochim. Acta., 54, 2912, 10.1016/j.electacta.2008.11.006 Lu, 2013, Electrochemical conversion of CO2 into dimethyl carbonate in a functionalized ionic liquid, J. CO2 Util., 3–4, 98, 10.1016/j.jcou.2013.10.001 Furuya, 1989, Electroreduction of carbon dioxide on gas-diffusion electrodes modified by metal phthalocyanines, J. Electroanal. Chem., 271, 181, 10.1016/0022-0728(89)80074-9 Yamamoto, 2002, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell, Electrochim. Acta., 47, 3327, 10.1016/S0013-4686(02)00253-0 Omae, 2006, Aspects of carbon dioxide utilization, Catal. Today., 115, 33, 10.1016/j.cattod.2006.02.024 Jessop, 1996, Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides, J. Am. Chem. Soc., 118, 344, 10.1021/ja953097b Cook, 1990, High rate gas phase CO2 reduction to ethylene and methane using gas diffusion electrodes, J. Electrochem. Soc., 137, 607, 10.1149/1.2086515 Han, 2018, High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes, ACS Energy Lett., 3, 855, 10.1021/acsenergylett.8b00164 Kaneco, 2006, Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts, Energy Fuel., 20, 409, 10.1021/ef050274d Barton Cole, 2010, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights, J. Am. Chem. Soc., 132, 11539, 10.1021/ja1023496 Detweiler, 2014, Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte, Langmuir, 30, 7593, 10.1021/la501245p Martin, 2013, New and revisited insights into the promotion of methanol synthesis catalysts by CO2, Catal. Sci. Technol., 3, 3343, 10.1039/c3cy00573a Giesbrecht, 2017, Electrochemical reduction of carbon dioxide to methanol in the presence of benzannulated dihydropyridine additives, ACS Energy Lett., 2, 549, 10.1021/acsenergylett.7b00047 Ren, 2000, Methanol transport through nation membranes. electro-osmotic drag effects on potential step measurements, J. Electrochem. Soc., 147, 466, 10.1149/1.1393219 Summers, 1986, The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials, J. Electroanal. Chem., 205, 219, 10.1016/0022-0728(86)90233-0 Kortlever, 2015, Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst, Catal. Today, 244, 58, 10.1016/j.cattod.2014.08.001 Prakash, 2013, Electrochemical reduction of CO2 over Sn-Nafion ® coated electrode for a fuel-cell-like device, J. Power Source., 223, 68, 10.1016/j.jpowsour.2012.09.036 Kwon, 2010, Formic acid from carbon dioxide on nanolayered electrocatalyst, Electrocatalysis, 1, 108, 10.1007/s12678-010-0017-y Lu, 2014, Electrochemical reduction of carbon dioxide to formic acid, ChemElectroChem, 1, 836, 10.1002/celc.201300206 Saeki, 1996, Electrochemical reduction of CO2 with high current density in a CO2 + methanol medium at various metal electrodes, J. Electroanal. Chem., 404, 299, 10.1016/0022-0728(95)04374-8 Kumar, 2012, Photochemical and photoelectrochemical reduction of CO2, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759 Barton, 2008, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327 Kaneco, 2006, Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes, Appl. Catal. B Environ., 64, 139, 10.1016/j.apcatb.2005.11.012 Zhu, 2013, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J. Am. Chem. Soc., 135, 16833, 10.1021/ja409445p Rumayor, 2018, Formic Acid manufacture: carbon dioxide utilization alternatives, Appl. Sci., 8, 914, 10.3390/app8060914 Laitar, 2005, Efficient homogeneous catalysis in the reduction of CO2 to CO, J. Am. Chem. Soc., 127, 17196, 10.1021/ja0566679 Guan, 2007, China's emerging presence in nanoscience and nanotechnology. A comparative bibliometric study of several nanoscience “giants, Res. Policy., 36, 880, 10.1016/j.respol.2007.02.004 Calderón, 2020, Where is thermal energy storage (TES) research going? – A bibliometric analysis, Sol. Energy., 200, 37, 10.1016/j.solener.2019.01.050 Omoregbe, 2020, Carbon capture technologies for climate change mitigation: a bibliometric analysis of the scientific discourse during 1998–2018, Energy Rep., 6, 1200, 10.1016/j.egyr.2020.05.003 De La Cruz-Lovera, 2019, Analysis of research topics and scientific collaborations in energy saving using bibliometric techniques and community detection, Energies, 12 He, 2019, Bibliometrical analysis of hydrogen storage, Int. J. Hydrogen Energy., 44, 28206, 10.1016/j.ijhydene.2019.07.014 Andreo-Martínez, 2020, A descriptive bibliometric study on bioavailability of pesticides in vegetables, food or wine research (1976–2018), Environ. Toxicol. Pharmacol, 77, 10.1016/j.etap.2020.103374 Pierpaoli, 2018, Indoor air quality: a bibliometric study, Sustain, 10 Russell, 2019, A bibliometric study of authorship and collaboration trends over the past 30 years in four major musculoskeletal science journals, Calcif. Tissue Int., 104, 239, 10.1007/s00223-018-0492-3 Liu, 2012, A bibliometric study of earthquake research: 1900-2010, Scientometrics, 92, 747, 10.1007/s11192-011-0599-z Jiang, 2018, The role of nanomaterials and nanotechnologies in wastewater treatment: a bibliometric analysis, Nanoscale Res. Lett., 13 Aleixandre-Tudó, 2020, Worldwide scientific research on nanotechnology: a bibliometric analysis of tendencies, funding, and challenges, J. Agric. Food Chem., 68, 9158, 10.1021/acs.jafc.0c02141 Zyoud, 2017, Global research trends in lithium toxicity from 1913 to 2015: a bibliometric analysis, Basic Clin. Pharmacol. Toxicol, 121, 67, 10.1111/bcpt.12755 Zhang, 2017, Mapping of water footprint research: a bibliometric analysis during 2006–2015, J. Clean. Prod., 149, 70, 10.1016/j.jclepro.2017.02.067 Alauddin, 2018, A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems, Ind. Eng. Chem. Res., 57, 10719, 10.1021/acs.iecr.8b00936 Yang, 2017, Mapping the scientific research on non-point source pollution: a bibliometric analysis, Environ. Sci. Pollut. Res., 24, 4352, 10.1007/s11356-016-8130-y Yataganbaba, 2017, Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015), Appl. Energy., 185, 720, 10.1016/j.apenergy.2016.10.107 Adedayo, 2021, Energy research in Nigeria: a bibliometric analysis, Energy Strateg. Rev., 34 Wong, 2021, Uncovering the dynamics in global carbon dioxide utilization research: a bibliometric analysis (1995–2019), Environ. Sci. Pollut. Res., 28, 13842, 10.1007/s11356-020-11643-w Su, 2020, Carbon emissions and environmental management based on big data and streaming data: a bibliometric analysis, Sci. Total Environ., 733, 1, 10.1016/j.scitotenv.2020.138984 David, 2020, Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019, Heliyon, 6, e04452, 10.1016/j.heliyon.2020.e04452 Chen, 2022, Metal – organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction, Coord. Chem. Rev., 10.1016/j.ccr.2022.214664 Li, 2020, MOF-based materials for photo- and electrocatalytic CO2 reduction, EnergyChem, 2 Woldu, 2022, Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts, Coord. Chem. Rev., 454 Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103 Doney, 2009, Ocean acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1, 169, 10.1146/annurev.marine.010908.163834 Choi, 2009, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem, 2, 796, 10.1002/cssc.200900036 Yang, 2008, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20, 14, 10.1016/S1001-0742(08)60002-9 Song, 2006, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today., 115, 2, 10.1016/j.cattod.2006.02.029 Olah, 2005, Beyond oil and gas: the methanol economy, Angew. Chemie - Int. Ed., 44, 2636, 10.1002/anie.200462121 Chen, 2012, Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u Hou, 2013, A review of surface plasmon resonance-enhanced photocatalysis, Adv. Funct. Mater., 23, 1612, 10.1002/adfm.201202148 Kondratenko, 2013, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci., 6, 3112, 10.1039/c3ee41272e Centi, 2009, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today., 148, 191, 10.1016/j.cattod.2009.07.075 Morris, 2009, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res., 42, 1983, 10.1021/ar9001679 Lyngfelt, 2001, A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion, Chem. Eng. Sci., 56, 3101, 10.1016/S0009-2509(01)00007-0 Whipple, 2010, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627 Kortlever, 2015, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559 Centi, 2013, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci., 6, 1711, 10.1039/c3ee00056g Goeppert, 2014, Recycling of carbon dioxide to methanol and derived products-closing the loop, Chem. Soc. Rev., 43, 7995, 10.1039/C4CS00122B Zhang, 2018, A bibliometric analysis of biodiesel research during 1991–2015, J. Mater. Cycles Waste Manag., 20, 10, 10.1007/s10163-016-0575-z Dey, 2016, The way forward in molecular electrocatalysis, Inorg. Chem., 55, 10831, 10.1021/acs.inorgchem.6b02502 Lane, 1973, Electrochem. Chemisorb. Molecul., 77, 1401 Hubbard, 1965, Thin-layer chronopotentiometric determination of reactants adsorbed on platinum electrodes, J. Electroanal. Chem., 9, 163 Lane, 1973, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem., 77, 1401, 10.1021/j100630a018 Brown, 1977, Molecular anchors for the attachment of metal complexes to graphite electrode surfaces, J. Electroanal. Chem., 83, 207, 10.1016/0368-1874(77)80374-2 Kodama, 1965, Kinetic control by chemical step at an adsorption-blocked electrode surface, Anal. Chem., 37, 1638, 10.1021/ac60232a002 Elliott, 1992, Chemically modified carbon electrodes, Analyst, 117, 1281, 10.1039/an9921701281 Nicholson, 1964, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36, 706, 10.1021/ac60210a007 Saveant, 1980, Catalysis of chemical reactions by electrodes, Acc. Chem. Res., 13, 323, 10.1021/ar50153a005 Andrieux, 1990, Fast kinetics by means of direct and indirect electrochemical techniques, Chem. Rev., 90, 723, 10.1021/cr00103a003