Systematic mapping on the evaluation of electrochemical CO2 conversion to fuels/chemicals/value-added products and way forward for breakthroughs in electrocatalysis
Tài liệu tham khảo
Adegoke, 2020, Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: realities and prospects of Cu-based materials, Sustain. Mater. Technol., 25, e00200
Adegoke, 2020, Highly efficient formic acid and carbon dioxide electro-reduction to alcohols on indium oxide electrodes, Sustain. Energy Fuel., 4, 4030, 10.1039/D0SE00623H
T.O.M.W. Ilson, N. Energy, T.O.M.W. Ilson, S. Rock, B.G. Survey, T.O.M.W. Ilson, S.A.S. Harma, C.O. Special, N. Energy, SPECIAL S q SECTION :, 1020423006 (2010) 148–149.
Michael, 2010, Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations, Int. J. Greenh. Gas Control., 4, 659, 10.1016/j.ijggc.2009.12.011
Adegoke, 2022, Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques, Coord. Chem. Rev., 457, 10.1016/j.ccr.2021.214389
Adegoke, 2022, Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: functionalities, mechanistic, and technoeconomic aspects, Mater. Today Chem., 24
Cao, 2020, Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel, Angew. Chemie Int. Ed., 59, 15014, 10.1002/anie.202005577
Zhang, 2021, Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction, Nano Energy, 80, 10.1016/j.nanoen.2020.105504
Zhang, 2020, Mechanistic understanding of the electrocatalytic CO2 reduction reaction – New developments based on advanced instrumental techniques, Nano Today, 31, 10.1016/j.nantod.2019.100835
Da Silva Freitas, 2021, Electrocatalytic CO2 reduction on nanostructured metal-based materials: challenges and constraints for a sustainable pathway to decarbonization, J. CO2 Util., 50, 10.1016/j.jcou.2021.101579
Figueroa, 2008, Advances in CO2 capture technology-The U.S. Department of Energy's carbon sequestration program, Int. J. Greenh. Gas Control., 2, 9, 10.1016/S1750-5836(07)00094-1
Olajire, 2010, CO2 capture and separation technologies for end-of-pipe applications - a review, Energy, 35, 2610, 10.1016/j.energy.2010.02.030
Kim, 2017, Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network, Appl. Energy., 185, 916, 10.1016/j.apenergy.2016.10.012
MacDowell, 2010, An overview of CO2 capture technologies, Energy Environ. Sci., 3, 1645, 10.1039/c004106h
Maginn, 2010, What to do with CO2, J. Phys. Chem. Lett., 1, 3478, 10.1021/jz101582c
An, 2021, Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate, Renew. Sustain. Energy Rev., 143, 10.1016/j.rser.2021.110952
Resasco, 2020, Electrocatalytic CO2 reduction to fuels: progress and opportunities, Trend. Chem., 2, 825, 10.1016/j.trechm.2020.06.007
Sultan, 2021, Innovative strategies toward challenges in PV-powered electrochemical CO2 reduction, J. Energy Chem., 60, 410, 10.1016/j.jechem.2021.01.043
Zhang, 2020, Electrochemical CO2 reduction reaction on cost-effective oxide-derived copper and transition metal–nitrogen–carbon catalysts, Curr. Opin. Electrochem., 23, 65, 10.1016/j.coelec.2020.04.005
Adegoke, 2020
Chen, 2021, Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites, Appl. Surf. Sci., 544, 10.1016/j.apsusc.2021.148965
Adegoke, 2018, Photocatalytic conversion of CO2 using zno semiconductor by hydrothermal method, Pak. J. Anal. Environ. Chem., 19, 1, 10.21743/pjaec/2018.06.01
Wang, 2011, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703, 10.1039/c1cs15008a
Huang, 2021, Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction, J. Energy Chem., 62, 71, 10.1016/j.jechem.2021.03.009
Ou, 2021, Mechanism for CO2 electroreduction into C2 products at the low overpotential: theoretical insights from an improved electrode/solution interface model, Surf. Sci., 705, 10.1016/j.susc.2020.121782
Laursen, 2021, CO2 electro-reduction on Cu3P: role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity, Electrochim. Acta., 391, 10.1016/j.electacta.2021.138889
Jiao, 2021, The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: advances, challenges, and opportunities, Nano Today, 36, 10.1016/j.nantod.2020.101028
Zhai, 2021, Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis, J. Energy Chem., 62, 43, 10.1016/j.jechem.2021.03.011
Olah, 2009, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487, 10.1021/jo801260f
Olah, 2011, Anthropogenic chemical carbon cycle for a sustainable future, J. Am. Chem. Soc., 133, 12881, 10.1021/ja202642y
Mikkelsen, 2010, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy Environ. Sci., 3, 43, 10.1039/B912904A
Zhi, 2021, Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene, J. CO2 Util., 50, 10.1016/j.jcou.2021.101594
Graves, 2011, Sustainable hydrocarbon fuels by recycling CO2 and H 2O with renewable or nuclear energy, Renew. Sustain. Energy Rev., 15, 1, 10.1016/j.rser.2010.07.014
Yu, 2008, Recent advances in CO2 capture and utilization, ChemSusChem, 1, 893, 10.1002/cssc.200800169
Jiang, 2010, Turning carbon dioxide into fuel, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 368, 3343, 10.1098/rsta.2010.0119
Quadrelli, 2011, Carbon dioxide recycling: emerging large-scale technologies with industrial potential, ChemSusChem, 4, 1194, 10.1002/cssc.201100473
Jitaru, 1997, Electrochemical reduction of carbon dioxide on flat metallic cathodes, J. Appl. Electrochem., 27, 875, 10.1023/A:1018441316386
Kuhl, 2014, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces, J. Am. Chem. Soc., 136, 14107, 10.1021/ja505791r
Chueh, 2010, High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria, Science (80-.), 330, 1797, 10.1126/science.1197834
Zhang, 2013, A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources, Appl. Energy., 108, 1, 10.1016/j.apenergy.2013.03.019
Jiang, 2016, Catalytic function of IrOx in the two-step thermochemical CO2-splitting reaction at high temperatures, ACS Catal., 6, 1172, 10.1021/acscatal.5b01774
Castro, 2018, Photoelectrochemical reactors for CO2 utilization, ACS Sustain. Chem. Eng., 6, 15877, 10.1021/acssuschemeng.8b03706
Sahara, 2016, Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode, J. Am. Chem. Soc., 138, 14152, 10.1021/jacs.6b09212
Hu, 2018, Designing effective Si/Ag interface via controlled chemical etching for photoelectrochemical CO2 reduction, J. Mater. Chem. A., 6, 21906, 10.1039/C8TA05420G
Costentin, 2013, Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A
De Luna, 2018, Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction, Nat. Catal., 1, 103, 10.1038/s41929-017-0018-9
Liu, 2016, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537, 382, 10.1038/nature19060
Yang, 2019, Selective electrocatalytic CO2 reduction enabled by SnO2 nanoclusters, J. Energy Chem., 37, 93, 10.1016/j.jechem.2018.12.004
Alotaibi, 2016, Photochemical carbon dioxide reduction on Mg-doped Ga(In)N nanowire arrays under visible light irradiation, ACS Energy Lett., 1, 246, 10.1021/acsenergylett.6b00119
Michl, 2011, Photochemical CO2 reduction: towards an artificial leaf?, Nat. Chem., 3, 268, 10.1038/nchem.1021
Wu, 2017, CO2 reduction: from the electrochemical to photochemical approach, Adv. Sci., 4, 1, 10.1002/advs.201700194
Yuan, 2009, Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid, Electrochim. Acta., 54, 2912, 10.1016/j.electacta.2008.11.006
Lu, 2013, Electrochemical conversion of CO2 into dimethyl carbonate in a functionalized ionic liquid, J. CO2 Util., 3–4, 98, 10.1016/j.jcou.2013.10.001
Furuya, 1989, Electroreduction of carbon dioxide on gas-diffusion electrodes modified by metal phthalocyanines, J. Electroanal. Chem., 271, 181, 10.1016/0022-0728(89)80074-9
Yamamoto, 2002, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell, Electrochim. Acta., 47, 3327, 10.1016/S0013-4686(02)00253-0
Omae, 2006, Aspects of carbon dioxide utilization, Catal. Today., 115, 33, 10.1016/j.cattod.2006.02.024
Jessop, 1996, Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides, J. Am. Chem. Soc., 118, 344, 10.1021/ja953097b
Cook, 1990, High rate gas phase CO2 reduction to ethylene and methane using gas diffusion electrodes, J. Electrochem. Soc., 137, 607, 10.1149/1.2086515
Han, 2018, High-rate electrochemical reduction of carbon monoxide to ethylene using Cu-nanoparticle-based gas diffusion electrodes, ACS Energy Lett., 3, 855, 10.1021/acsenergylett.8b00164
Kaneco, 2006, Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts, Energy Fuel., 20, 409, 10.1021/ef050274d
Barton Cole, 2010, Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights, J. Am. Chem. Soc., 132, 11539, 10.1021/ja1023496
Detweiler, 2014, Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte, Langmuir, 30, 7593, 10.1021/la501245p
Martin, 2013, New and revisited insights into the promotion of methanol synthesis catalysts by CO2, Catal. Sci. Technol., 3, 3343, 10.1039/c3cy00573a
Giesbrecht, 2017, Electrochemical reduction of carbon dioxide to methanol in the presence of benzannulated dihydropyridine additives, ACS Energy Lett., 2, 549, 10.1021/acsenergylett.7b00047
Ren, 2000, Methanol transport through nation membranes. electro-osmotic drag effects on potential step measurements, J. Electrochem. Soc., 147, 466, 10.1149/1.1393219
Summers, 1986, The electrochemical reduction of aqueous carbon dioxide to methanol at molybdenum electrodes with low overpotentials, J. Electroanal. Chem., 205, 219, 10.1016/0022-0728(86)90233-0
Kortlever, 2015, Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst, Catal. Today, 244, 58, 10.1016/j.cattod.2014.08.001
Prakash, 2013, Electrochemical reduction of CO2 over Sn-Nafion ® coated electrode for a fuel-cell-like device, J. Power Source., 223, 68, 10.1016/j.jpowsour.2012.09.036
Kwon, 2010, Formic acid from carbon dioxide on nanolayered electrocatalyst, Electrocatalysis, 1, 108, 10.1007/s12678-010-0017-y
Lu, 2014, Electrochemical reduction of carbon dioxide to formic acid, ChemElectroChem, 1, 836, 10.1002/celc.201300206
Saeki, 1996, Electrochemical reduction of CO2 with high current density in a CO2 + methanol medium at various metal electrodes, J. Electroanal. Chem., 404, 299, 10.1016/0022-0728(95)04374-8
Kumar, 2012, Photochemical and photoelectrochemical reduction of CO2, Annu. Rev. Phys. Chem., 63, 541, 10.1146/annurev-physchem-032511-143759
Barton, 2008, Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327
Kaneco, 2006, Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes, Appl. Catal. B Environ., 64, 139, 10.1016/j.apcatb.2005.11.012
Zhu, 2013, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J. Am. Chem. Soc., 135, 16833, 10.1021/ja409445p
Rumayor, 2018, Formic Acid manufacture: carbon dioxide utilization alternatives, Appl. Sci., 8, 914, 10.3390/app8060914
Laitar, 2005, Efficient homogeneous catalysis in the reduction of CO2 to CO, J. Am. Chem. Soc., 127, 17196, 10.1021/ja0566679
Guan, 2007, China's emerging presence in nanoscience and nanotechnology. A comparative bibliometric study of several nanoscience “giants, Res. Policy., 36, 880, 10.1016/j.respol.2007.02.004
Calderón, 2020, Where is thermal energy storage (TES) research going? – A bibliometric analysis, Sol. Energy., 200, 37, 10.1016/j.solener.2019.01.050
Omoregbe, 2020, Carbon capture technologies for climate change mitigation: a bibliometric analysis of the scientific discourse during 1998–2018, Energy Rep., 6, 1200, 10.1016/j.egyr.2020.05.003
De La Cruz-Lovera, 2019, Analysis of research topics and scientific collaborations in energy saving using bibliometric techniques and community detection, Energies, 12
He, 2019, Bibliometrical analysis of hydrogen storage, Int. J. Hydrogen Energy., 44, 28206, 10.1016/j.ijhydene.2019.07.014
Andreo-Martínez, 2020, A descriptive bibliometric study on bioavailability of pesticides in vegetables, food or wine research (1976–2018), Environ. Toxicol. Pharmacol, 77, 10.1016/j.etap.2020.103374
Pierpaoli, 2018, Indoor air quality: a bibliometric study, Sustain, 10
Russell, 2019, A bibliometric study of authorship and collaboration trends over the past 30 years in four major musculoskeletal science journals, Calcif. Tissue Int., 104, 239, 10.1007/s00223-018-0492-3
Liu, 2012, A bibliometric study of earthquake research: 1900-2010, Scientometrics, 92, 747, 10.1007/s11192-011-0599-z
Jiang, 2018, The role of nanomaterials and nanotechnologies in wastewater treatment: a bibliometric analysis, Nanoscale Res. Lett., 13
Aleixandre-Tudó, 2020, Worldwide scientific research on nanotechnology: a bibliometric analysis of tendencies, funding, and challenges, J. Agric. Food Chem., 68, 9158, 10.1021/acs.jafc.0c02141
Zyoud, 2017, Global research trends in lithium toxicity from 1913 to 2015: a bibliometric analysis, Basic Clin. Pharmacol. Toxicol, 121, 67, 10.1111/bcpt.12755
Zhang, 2017, Mapping of water footprint research: a bibliometric analysis during 2006–2015, J. Clean. Prod., 149, 70, 10.1016/j.jclepro.2017.02.067
Alauddin, 2018, A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems, Ind. Eng. Chem. Res., 57, 10719, 10.1021/acs.iecr.8b00936
Yang, 2017, Mapping the scientific research on non-point source pollution: a bibliometric analysis, Environ. Sci. Pollut. Res., 24, 4352, 10.1007/s11356-016-8130-y
Yataganbaba, 2017, Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015), Appl. Energy., 185, 720, 10.1016/j.apenergy.2016.10.107
Adedayo, 2021, Energy research in Nigeria: a bibliometric analysis, Energy Strateg. Rev., 34
Wong, 2021, Uncovering the dynamics in global carbon dioxide utilization research: a bibliometric analysis (1995–2019), Environ. Sci. Pollut. Res., 28, 13842, 10.1007/s11356-020-11643-w
Su, 2020, Carbon emissions and environmental management based on big data and streaming data: a bibliometric analysis, Sci. Total Environ., 733, 1, 10.1016/j.scitotenv.2020.138984
David, 2020, Future research tendencies for solar energy management using a bibliometric analysis, 2000–2019, Heliyon, 6, e04452, 10.1016/j.heliyon.2020.e04452
Chen, 2022, Metal – organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction, Coord. Chem. Rev., 10.1016/j.ccr.2022.214664
Li, 2020, MOF-based materials for photo- and electrocatalytic CO2 reduction, EnergyChem, 2
Woldu, 2022, Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts, Coord. Chem. Rev., 454
Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103
Doney, 2009, Ocean acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1, 169, 10.1146/annurev.marine.010908.163834
Choi, 2009, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources, ChemSusChem, 2, 796, 10.1002/cssc.200900036
Yang, 2008, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci., 20, 14, 10.1016/S1001-0742(08)60002-9
Song, 2006, Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, Catal. Today., 115, 2, 10.1016/j.cattod.2006.02.029
Olah, 2005, Beyond oil and gas: the methanol economy, Angew. Chemie - Int. Ed., 44, 2636, 10.1002/anie.200462121
Chen, 2012, Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u
Hou, 2013, A review of surface plasmon resonance-enhanced photocatalysis, Adv. Funct. Mater., 23, 1612, 10.1002/adfm.201202148
Kondratenko, 2013, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci., 6, 3112, 10.1039/c3ee41272e
Centi, 2009, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catal. Today., 148, 191, 10.1016/j.cattod.2009.07.075
Morris, 2009, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res., 42, 1983, 10.1021/ar9001679
Lyngfelt, 2001, A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion, Chem. Eng. Sci., 56, 3101, 10.1016/S0009-2509(01)00007-0
Whipple, 2010, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627
Kortlever, 2015, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559
Centi, 2013, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy Environ. Sci., 6, 1711, 10.1039/c3ee00056g
Goeppert, 2014, Recycling of carbon dioxide to methanol and derived products-closing the loop, Chem. Soc. Rev., 43, 7995, 10.1039/C4CS00122B
Zhang, 2018, A bibliometric analysis of biodiesel research during 1991–2015, J. Mater. Cycles Waste Manag., 20, 10, 10.1007/s10163-016-0575-z
Dey, 2016, The way forward in molecular electrocatalysis, Inorg. Chem., 55, 10831, 10.1021/acs.inorgchem.6b02502
Lane, 1973, Electrochem. Chemisorb. Molecul., 77, 1401
Hubbard, 1965, Thin-layer chronopotentiometric determination of reactants adsorbed on platinum electrodes, J. Electroanal. Chem., 9, 163
Lane, 1973, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem., 77, 1401, 10.1021/j100630a018
Brown, 1977, Molecular anchors for the attachment of metal complexes to graphite electrode surfaces, J. Electroanal. Chem., 83, 207, 10.1016/0368-1874(77)80374-2
Kodama, 1965, Kinetic control by chemical step at an adsorption-blocked electrode surface, Anal. Chem., 37, 1638, 10.1021/ac60232a002
Elliott, 1992, Chemically modified carbon electrodes, Analyst, 117, 1281, 10.1039/an9921701281
Nicholson, 1964, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36, 706, 10.1021/ac60210a007
Saveant, 1980, Catalysis of chemical reactions by electrodes, Acc. Chem. Res., 13, 323, 10.1021/ar50153a005
Andrieux, 1990, Fast kinetics by means of direct and indirect electrochemical techniques, Chem. Rev., 90, 723, 10.1021/cr00103a003