A review and evaluation of thermal insulation materials and methods for thermal energy storage systems

Renewable and Sustainable Energy Reviews - Tập 103 - Trang 71-84 - 2019
Willy Villasmil1, Ludger J. Fischer1, Jörg Worlitschek1
1School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland

Tài liệu tham khảo

Eurostat. Energy consumption in households (EU-28, 2016 data) 2018. 〈https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households〉 [accessed 7 November 2018]. U.S. Energy Information Administration. Table CE3.1 Annual household site end‐use consumption in the U.S. — totals and averages, 2015; 2018. Colangelo, 2016, Innovation in flat solar thermal collectors: a review of the last ten years experimental results, Renew Sustain Energy Rev, 57, 1141, 10.1016/j.rser.2015.12.142 Shah, 2018, Seasonal thermal energy storage system for cold climate zones: a review of recent developments, Renew Sustain Energy Rev, 97, 38, 10.1016/j.rser.2018.08.025 Colclough, 2015, Net energy analysis of a solar combi system with Seasonal Thermal Energy Store, Appl Energy, 147, 611, 10.1016/j.apenergy.2015.02.088 Antoniadis, 2018, Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS, Renew Energy, 1 Sorknæs, 2018, Simulation method for a pit seasonal thermal energy storage system with a heat pump in a district heating system, Energy, 152, 533, 10.1016/j.energy.2018.03.152 Dominković, 2015, A hybrid optimization model of biomass trigeneration system combined with pit thermal energy storage, Energy Convers Manag, 104, 90, 10.1016/j.enconman.2015.03.056 Reiter, 2016, BIG solar Graz: solar District heating in Graz -500,000 m2 for 20% solar fraction, Energy Procedia, 91, 578, 10.1016/j.egypro.2016.06.204 De Goeijen, 2017, Improving an integer linear programming model of an ecovat buffer by adding long-term planning, Energies, 10 Xu, 2018, Application of large underground seasonal thermal energy storage in district heating system: a model-based energy performance assessment of a pilot system in Chifeng, China, Appl Therm Eng, 137, 319, 10.1016/j.applthermaleng.2018.03.047 McDaniel, 2016, Modeling of combined heat and power plant performance with seasonal thermal energy storage, J Energy Storage, 7, 13, 10.1016/j.est.2016.04.006 Köfinger, 2018, Simulation based evaluation of large scale waste heat utilization in urban district heating networks: optimized integration and operation of a seasonal storage, Energy, 159, 1161, 10.1016/j.energy.2018.06.192 Zhang, 2016, Thermal energy storage: recent developments and practical aspects, Prog Energy Combust Sci, 53, 1, 10.1016/j.pecs.2015.10.003 Lizana, 2017, Advances in thermal energy storage materials and their applications towards zero energy buildings: a critical review, Appl Energy, 203, 219, 10.1016/j.apenergy.2017.06.008 Alva, 2017, Thermal energy storage materials and systems for solar energy applications, Renew Sustain Energy Rev, 68, 693, 10.1016/j.rser.2016.10.021 Xu, 2014, A review of available technologies for seasonal thermal energy storage, Sol Energy, 103, 610, 10.1016/j.solener.2013.06.006 Persson, 2013, Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective, Appl Energy, 112, 975, 10.1016/j.apenergy.2013.03.047 Gogus, 2009 Hess, 1982, An Experimental and Numerical Study on the Effect of the Wall in a Thermocline-Type Cylindrical Enclosure – I, Sol Energy, 28, 145, 10.1016/0038-092X(82)90293-6 Hugo, 2010, Solar combisystem with seasonal thermal storage, J Build Perform Simul, 3, 255, 10.1080/19401491003653603 Gasque, 2015, Study of the influence of inner lining material on thermal stratification in a hot water storage tank, Appl Therm Eng, 75, 344, 10.1016/j.applthermaleng.2014.10.040 Schiavoni, 2016, Insulation materials for the building sector: a review and comparative analysis, Renew Sustain Energy Rev, 62, 988, 10.1016/j.rser.2016.05.045 Aditya, 2017, A review on insulation materials for energy conservation in buildings, Renew Sustain Energy Rev, 73, 1352, 10.1016/j.rser.2017.02.034 Gao, 2016, Perspective of aerogel glazings in energy efficient buildings, Build Environ, 95, 405, 10.1016/j.buildenv.2015.10.001 Fang, 2014, The effect of building envelope insulation on cooling energy consumption in summer, Energy Build, 77, 197, 10.1016/j.enbuild.2014.03.030 Nyers, 2015, Investment-savings method for energy-economic optimization of external wall thermal insulation thickness, Energy Build, 86, 268, 10.1016/j.enbuild.2014.10.023 Nematchoua, 2015, Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: case of Cameroon, Renew Sustain Energy Rev, 50, 1192, 10.1016/j.rser.2015.05.066 Cuce, 2014, Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings, Energy Build, 77, 28, 10.1016/j.enbuild.2014.03.034 Alam, 2011, Vacuum insulation panels (VIPs) for building construction industry - a review of the contemporary developments and future directions, Appl Energy, 88, 3592, 10.1016/j.apenergy.2011.04.040 Jelle, 2011, Traditional, state-of-the-art and future thermal building insulation materials and solutions - Properties, requirements and possibilities, Energy Build, 43, 2549, 10.1016/j.enbuild.2011.05.015 Pinel, 2011, A review of available methods for seasonal storage of solar thermal energy in residential applications, Renew Sustain Energy Rev, 15, 3341, 10.1016/j.rser.2011.04.013 Hesaraki, 2015, Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review, Renew Sustain Energy Rev, 43, 1199, 10.1016/j.rser.2014.12.002 Navarro, 2016, Thermal energy storage in building integrated thermal systems: a review. Part 1. active storage systems, Renew Energy, 88, 526, 10.1016/j.renene.2015.11.040 Goeke, 2017, Autarkie - Tendenzen der solarthermischen Selbstversorgung, Bauphysik, 39, 114, 10.1002/bapi.201710014 Simons, 2011, Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage, Energy Build, 43, 1231, 10.1016/j.enbuild.2010.12.029 Sonnenhaus-Institut e.V. Das Sonnenhaus. 3. Edition; 2013. Jenni, 2016, Die Energiewende ist eine Speicherfrage, HK-Gebäudetech, 9/16 Novo, 2010, Review of seasonal heat storage in large basins: water tanks and gravel–water pits, Appl Energy, 87, 390, 10.1016/j.apenergy.2009.06.033 Clarke, 2014, A passive house with seasonal solar energy store: In situ data and numerical modelling, Int J Ambient Energy, 35, 37, 10.1080/01430750.2012.759153 Sweet, 2012, Numerical simulation of underground Seasonal Solar Thermal Energy Storage (SSTES) for a single family dwelling using TRNSYS, Sol Energy, 86, 289, 10.1016/j.solener.2011.10.002 Zoellner, 2008, Public acceptance of renewable energies: results from case studies in Germany, Energy Policy, 36, 4136, 10.1016/j.enpol.2008.06.026 van der Horst, 2007, NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies, Energy Policy, 35, 2705, 10.1016/j.enpol.2006.12.012 Bauer, 2010, German central solar heating plants with seasonal heat storage, Sol Energy, 84, 612, 10.1016/j.solener.2009.05.013 Nielsen, 2015, Renewable District heating and cooling technologies with and without Seasonal storage, Elsevier Ltd EN 826:2013. Thermal insulating products for building applications - Determination of compression behaviour; 2013. Koru, 2016, Determination of thermal conductivity of closed-cell insulation materials that depend on temperature and density, Arab J Sci Eng, 41, 4337, 10.1007/s13369-016-2122-6 Ochs, 2008, Effective thermal conductivity of moistened insulation materials as a function of temperature, Int J Heat Mass Transf, 51, 539, 10.1016/j.ijheatmasstransfer.2007.05.005 Abdou, 2005, Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures, J Build Phys, 29, 171, 10.1177/1744259105056291 Dominguez-Munoz, 2010, Uncertainty in the thermal conductivity of insulation materials, Energy Build, 42, 2159, 10.1016/j.enbuild.2010.07.006 Abdou, 2013, The variation of thermal conductivity of fibrous insulation materials under different levels of moisture content, Constr Build Mater, 43, 533, 10.1016/j.conbuildmat.2013.02.058 Papadopoulos, 2005, State of the art in thermal insulation materials and aims for future developments, Energy Build, 37, 77, 10.1016/j.enbuild.2004.05.006 Kurańska, 2015, Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil, Ind Crops Prod, 74, 849, 10.1016/j.indcrop.2015.06.006 Zhang, 2017, Experimental study of the thermal conductivity of polyurethane foams, Appl Therm Eng, 115, 528, 10.1016/j.applthermaleng.2016.12.057 Yang, 2015, Rigid polyurethane foams incorporated with phase change materials: a state-of-the-art review and future research pathways, Energy Build, 87, 25, 10.1016/j.enbuild.2014.10.075 Koebel, 2012, Aerogel-based thermal superinsulation: an overview, J Sol-Gel Sci Technol, 63, 315, 10.1007/s10971-012-2792-9 Griffiths, 2015, Seasonal Thermal Storage, Handb Clean Energy Syst, 1 Jenni Energietechnik AG. Solarspeicher für Warmwasser und Heizung 2016. 〈http://jenni.ch/files/jenni/inhalte/pdf/Publikationen/Solarspeicher.pdf〉 [accessed 31 July 2018]. Jenni Energietechnik AG. Preisliste 2018. 〈http://jenni.ch/files/jenni/inhalte/pdf/Produkte/Preise_vollstaendig.pdf〉 [accessed 31 July 2018]. Colclough, 2016, Financial analysis of an installed small scale seasonal thermal energy store, Renew Energy, 86, 422, 10.1016/j.renene.2015.08.032 Baetens, 2010, Vacuum insulation panels for building applications: a review and beyond, Energy Build, 42, 147, 10.1016/j.enbuild.2009.09.005 Zhuang, 2017, Restructure of expanded cork with fumed silica as novel core materials for vacuum insulation panels, Compos Part B Eng, 127, 215, 10.1016/j.compositesb.2017.06.019 Alam, 2014, Experimental characterisation and evaluation of the thermo-physical properties of expanded perlite - Fumed silica composite for effective vacuum insulation panel (VIP) core, Energy Build, 69, 442, 10.1016/j.enbuild.2013.11.027 Singh, 2015, Experimental investigations into thermal transport phenomena in vacuum insulation panels (VIPs) using fumed silica cores, Energy Build, 107, 76, 10.1016/j.enbuild.2015.08.004 Simmler H, Brunner S, Heinemann U, Schwab H, Kumaran K, Mukhopadhyaya P. et al. Vacuum Insulation Panels - Study on VIP-components and Panels for Service Life Prediction of VIP in Building Applications (Subtask A); 2005. Ghazi Wakili, 2011, Effective thermal conductivity of a staggered double layer of vacuum insulation panels, Energy Build, 43, 1241, 10.1016/j.enbuild.2011.01.004 Capozzoli, 2015, Vacuum insulation panels: analysis of the thermal performance of both single panel and multilayer boards, Energies, 8, 2528, 10.3390/en8042528 Schwab, 2005, Thermal bridges in vacuum-insulated building façades, J Therm Envel Build Sci, 28, 345, 10.1177/1097196305051794 Wegger, 2011, Aging effects on thermal properties and service life of vacuum insulation panels, J Build Phys, 35, 128, 10.1177/1744259111398635 Pons, 2018, Evaluation of VIPs after mild artificial aging during 10 years: focus on the core behavior, Energy Build, 162, 198, 10.1016/j.enbuild.2017.12.016 Yrieix, 2014, VIP service life assessment: interactions between barrier laminates and core material, and significance of silica core ageing, Energy Build, 85, 617, 10.1016/j.enbuild.2014.07.035 Molleti, 2018, Long-term in-situ assessment of vacuum insulation panels for integration into roofing systems: five years of field-performance, Energy Build, 168, 97, 10.1016/j.enbuild.2018.03.010 Johansson, 2016, Evaluation of 5 years' performance of VIPs in a retrofitted building façade, Energy Build, 130, 488, 10.1016/j.enbuild.2016.08.073 Brunner, 2005, Monitoring of VIP in building applications, 7th Int Vac Insul Symp, 35 Kim, 2017, Aging performance evaluation of vacuum insulation panel (VIP), Case Stud Constr Mater, 7, 329, 10.1016/j.cscm.2017.09.003 Lorenzati, 2017, The Effect of Temperature on Thermal Performance of Fumed Silica Based Vacuum Insulation Panels for Buildings, Energy Procedia, 111, 490, 10.1016/j.egypro.2017.03.211 Araki, 2009, Optimization about multilayer laminated film and getter device materials of vacuum insulation panel for using at high temperature, J Mater Process Technol, 209, 271, 10.1016/j.jmatprotec.2008.01.054 Fuchs, 2014, First experience in vacuum insulated hot water storage with100 m3, Energy Procedia, 57, 2390, 10.1016/j.egypro.2014.10.247 Lucchi, 2017, Thermal performance evaluation and comfort assessment of advanced aerogel as blown-in insulation for historic buildings, Build Environ, 122, 258, 10.1016/j.buildenv.2017.06.019 Caps, 1986, Infrared radiative heat transfer in highly transparent silica aerogel, Sol Energy, 36, 361, 10.1016/0038-092X(86)90153-2 He, 2015, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl Therm Eng, 81, 28, 10.1016/j.applthermaleng.2015.02.013 Tang, 2016, Multi-layer graded doping in silica aerogel insulation with temperature gradient, Int J Heat Mass Transf, 99, 192, 10.1016/j.ijheatmasstransfer.2016.03.093 Garnier, 2015, Super insulated aerogel windows: impact on daylighting and thermal performance, Build Environ, 94, 231, 10.1016/j.buildenv.2015.08.009 Dowson, 2012, Predicted and in situ performance of a solar air collector incorporating a translucent granular aerogel cover, Energy Build, 49, 173, 10.1016/j.enbuild.2012.02.007 Reim, 2005, Silica aerogel granulate material for thermal insulation and daylighting, Sol Energy, 79, 131, 10.1016/j.solener.2004.08.032 Cuce, 2014, Toward aerogel based thermal superinsulation in buildings: a comprehensive review, Renew Sustain Energy Rev, 34, 273, 10.1016/j.rser.2014.03.017 Jelle, 2015, Aerogel Insulation for Building Applications, Sol-Gel Handb, 3–3, 1385 Maleki, 2014, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J Non Cryst Solids, 385, 55, 10.1016/j.jnoncrysol.2013.10.017 Berardi, 2015, The development of a monolithic aerogel glazed window for an energy retrofitting project, Appl Energy, 154, 603, 10.1016/j.apenergy.2015.05.059 Wong, 2014, Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes, Microporous Mesoporous Mater, 183, 23, 10.1016/j.micromeso.2013.08.029 Kamiuto, 1999, Thermal characteristics of a solar tank with aerogel surface insulation, Appl Energy, 62, 113, 10.1016/S0306-2619(99)00004-5 Stanley W. Heat-insulated receptacle. US Patent No. 1,071,817; 1912. Diamant RME. Thermal and Acoustic Insulation. Elsevier Science; 2014. Augustynowicz, 2000, Cryogenic Insulation System for Soft Vacuum, 1691 Ülker, 2014, Applications of Aerogels and Their Composites in Energy-Related Technologies, 157 Lu, 1995, Correlation between structure and thermal conductivity of organic aerogels, J Non Cryst Solids, 188, 226, 10.1016/0022-3093(95)00191-3 Bouquerel, 2012, Heat transfer modeling in vacuum insulation panels containing nanoporous silicas - A review, Energy Build, 54, 320, 10.1016/j.enbuild.2012.07.034 Schwab H. Vakuumisolationspaneele- Gas- und Feuchteeintrag sowie Feuchte- und Wärmetransport; 2004. Tan, 2014, Basic Properties of Gases, Air Pollut Greenh Gases, 10.1007/978-981-287-212-8_2 Swimm, 2009, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm, Int J Thermophys, 30, 1329, 10.1007/s10765-009-0617-z Simmler, 2005, Vacuum insulation panels for building application: basic properties, aging mechanisms and service life, Energy Build, 37, 1122, 10.1016/j.enbuild.2005.06.015 Caps, 2000, Thermal conductivity of opacified powder filler materials for vacuum insulations, Int J Thermophys, 21, 445, 10.1023/A:1006691731253 Lang, 2016, Thermal conductivity of vacuum insulation materials for thermal energy stores in solar thermal systems, Energy Procedia, 91, 172, 10.1016/j.egypro.2016.06.196 Beikircher, 2011, Entwicklung eines superisolierten H2O-Langzeit- Wärmespeichers. 21 Beikircher, 2013, Heat transport in evacuated perlite powders for super-insulated long-term storages up to 300 °C, J Heat Transf, 135, 051301, 10.1115/1.4023351 Beikircher T, Buttinger F, Demharter M. Super-Insulated Long-Term Hot Water Storage. ISES Sol. World Congr., Kassel: ISES; 2011. Beikircher, 2012, Super-isolierter H2O-Langzeit- Wärmespeicher mit neuartigem Schichtenlader für hohe solare Deckungsgrade. 10 Fuchs, 2012, Vacuum insulation panels - A promising solution for high insulated tanks, Energy Procedia, 30, 424, 10.1016/j.egypro.2012.11.050 Linhart M, Hána P, Petrík V, Marek D. Property Index – Overview of European Residential Markets; 2017. Grütter M. Zürcher Immobilienpreise - Eine Analyse der Handänderungen von Wohnimmobilien 2007 bis 2016. Zürich; 2017. Beikircher, 2013, Superisolierter Heißwasser-Langzeitwärmespeicher, Fkz: 0325964A, Garch Gerschitzka M, Lang S, Rieder M, Sirch M, Marx R, Bauer D. et al. Entwicklung großvolumiger, preiswerter Warmwasserspeicher mit hocheffizienter Dämmung zur Außenaufstellung; 2016. Kalnæs, 2014, Vacuum insulation panel products: a state-of-the-art review and future research pathways, Appl Energy, 116, 355, 10.1016/j.apenergy.2013.11.032 Omer, 2007, Thermal insulations for hot water cylinders: a review and a conceptual evaluation, Build Serv Eng Res Technol, 28, 275, 10.1177/0143624406075269 Pfundstein, 2008, Insulating materials: principles, materials, applications, 8504 Riffat, 2013, A review of state-of-the-art aerogel applications in buildings, Int J Low-Carbon Technol, 8, 1, 10.1093/ijlct/cts001 Miros, 2017, Aerogel insulation materials for industrial installation: properties and structure of new factory-made products, J Sol-Gel Sci Technol, 84, 496, 10.1007/s10971-017-4539-0 Al-Homoud, 2005, Performance characteristics and practical applications of common building thermal insulation materials, Build Environ, 40, 353, 10.1016/j.buildenv.2004.05.013 Winterling, 2011, Rigid polystyrene foam (EPS, XPS), Kunstst Int, 101, 18 Gnip, 2012, Thermal conductivity of expanded polystyrene (EPS) at 10°C and its conversion to temperatures within interval from 0 to 50°C, Energy Build, 52, 107, 10.1016/j.enbuild.2012.05.029 Karamanos, 2008, The impact of temperature and moisture on the thermal performance of stone wool, Energy Build, 40, 1402, 10.1016/j.enbuild.2008.01.004 Yue, 2006, Specific heat capacity and thermal conductivity of foam glass (type 150P) at temperatures from 80 to 400 K, Int J Thermophys, 27, 270, 10.1007/s10765-006-0026-5 Ventrella, 2012, Characterization of new glass coated foam glass insulating tiles by standard tests, J Mater Eng Perform, 21, 2380, 10.1007/s11665-012-0164-9 Yatsenko EA, Goltsman BM, Smolii VA, Kosarev AS. Foamed slag glass - Eco-friendly insulating material based on slag waste. 2015 IEEE Proceedings of the 15th International Conference Environ Electr Eng EEEIC 2015 - Conference Proceedings;0124:819–823. doi:10.1109/EEEIC.2015.7165270; 2015. Tereshchenko, 2017, Status and Prospects of Development of Production of Glassy Foamed Heat-Insulation Materials, Glas Ceram (Engl Transl Steklo i Keram), 74, 216 Pittsburgh Corning. Product Profile, FOAMGLAS Buliding 2018. 〈https://uk.foamglas.com/-/media/ukfoamglascom/alle-dokumente/building/downloads/documentation/135-pb0915_produkteprofil-pcuk_2016_f_foamglas_medium.pdf〉 [accessed 31 July 2018]. Kayfeci, 2014, Determination of energy saving and optimum insulation thicknesses of the heating piping systems for different insulation materials, Energy Build, 69, 278, 10.1016/j.enbuild.2013.11.017 Al-Sanea, 2003, Heat Transfer Characteristics and Optimum Insulation Thickness for Cavity Walls, J Build Phys, 26, 285 Kymäläinen, 2008, Flax and hemp fibres as raw materials for thermal insulations, Build Environ, 43, 1261, 10.1016/j.buildenv.2007.03.006 Kayfeci, 2013, Determination of optimum insulation thickness of external walls with two different methods in cooling applications, Appl Therm Eng, 50, 217, 10.1016/j.applthermaleng.2012.06.031 Knauf Insulation Schweiz GmbH. Produktkatalog / Preisliste 2018. 〈http://www.knaufinsulation.ch/sites/ch.knaufinsulation.net/files/ki-katalog_2018_web_1.pdf〉 [accessed 31 July 2018]. Hurley J. Research and Development Final Report (Report Nr. GLA-0015) – A UK Market Survey for Foam Glass; 2003. Alotaibi, 2014, Vacuum insulated panels for sustainable buildings: a review of research and applications, Int J Energy Res, 38, 1, 10.1002/er.3101 Cho, 2014, Assessment of the economic performance of vacuum insulation panels for housing projects, Energy Build, 70, 45, 10.1016/j.enbuild.2013.11.073 Alam, 2017, Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings, Appl Energy, 188, 1, 10.1016/j.apenergy.2016.11.115 va-Q-tec. va-Q-pro: Product Data Sheet 2018. 〈https://www.va-q-tec.com/en/download-center/download.html?Pid=365&aid=965〉 [accessed 4 June 2018]. Unifrax. Product Information Sheet - Excelfrax 200 VIP Insulation 2018. 〈https://www.unifrax.com/wp-content/uploads/2015/05/Form-C-1501-Excelfrax-VIP-2-03.pdf〉 [accessed 24 June 2018]. Porextherm. Data sheet - Vacupor NT 2017. 〈http://www.porextherm.com/images/anhaenge/db_nt_en.pdf〉 [accessed 24 June 2018]. TURNA d.o.o. Technical Characteristics TURVAC Si 2018. 〈http://www.turvac.eu/0/Products/TechnicalCharacteristics.aspx〉 [accessed 24 June 2018]. NanoPore Incorporated. NanoPore - Vacuum Insulation Panels and Inserts 2018. 〈http://www.nanopore.com/documents/NanoPoreVIP.pdf〉 [accessed 24 June 2018].