Health risk assessment for nanoparticles: A case for using expert judgment
Tóm tắt
Uncertainties in conventional quantitative risk assessment typically relate to values of parameters in risk models. For many environmental contaminants, there is a lack of sufficient information about multiple components of the risk assessment framework. In such cases, the use of default assumptions and extrapolations to fill in the data gaps is a common practice. Nanoparticle risks, however, pose a new form of risk assessment challenge. Besides a lack of data, there is deep scientific uncertainty regarding every aspect of the risk assessment framework: (a) particle characteristics that may affect toxicity; (b) their fate and transport through the environment; (c) the routes of exposure and the metrics by which exposure ought to be measured; (d) the mechanisms of translocation to different parts of the body; and (e) the mechanisms of toxicity and disease. In each of these areas, there are multiple and competing models and hypotheses. These are not merely parametric uncertainties but uncertainties about the choice of the causal mechanisms themselves and the proper model variables to be used, i.e., structural uncertainties. While these uncertainties exist for PM2.5 as well, risk assessment for PM2.5 has avoided dealing with these issues because of a plethora of epidemiological studies. However, such studies don’t exist for the case of nanoparticles. Even if such studies are done in the future, they will be very specific to a particular type of engineered nanoparticle and not generalizable to other nanoparticles. Therefore, risk assessment for nanoparticles will have to deal with the various uncertainties that were avoided in the case of PM2.5. Consequently, uncertainties in estimating risks due to nanoparticle exposures may be characterized as ‘extreme’. This paper proposes a methodology by which risk analysts can cope with such extreme uncertainty. One way to make these problems analytically tractable is to use expert judgment approaches to study the degree of consensus and/or disagreement between experts on different parts of the exposure–response paradigm. This can be done by eliciting judgments from a wide range of experts on different parts of the risk causal chain. We also use examples to illustrate how studying expert consensus/disagreement helps in research prioritization and budget allocation exercises. The expert elicitation can be repeated over the course of several years, over which time, the state of scientific knowledge will also improve and uncertainties may possibly reduce. Results from expert the elicitation exercise can be used by risk managers or managers of funding agencies as a tool for research prioritization.
Tài liệu tham khảo
Anderson E.L., Hattis D.H. (1999). When and how can you specify a probability distribution when you don’t know much? Risk Anal. 19:43–68
Araujo L., Lobenberg R., Kreuter J. (1999). Influence of the surfactant concentration on the body distribution of nanoparticles. J. Drug Target. 6:373–385
Barnes P.J. (2001). Neurogenic inflammation in the airways. Respir. Physiol. 125:145–154
Brown D.M., Wilson M.R., MacNee W., Stone V., Donaldson K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175(3):191–199
Brown D.M., Stone V., Findlay P., MacNee W., Donaldson K. (2000). Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med. 57(10):685–691
Brown J.S., Zeman K.L., Bennett W.D. (2002). Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 166:1240–1247
Burnett R.T., Brook J., Dann T., Delocla C., Philips O., Cakmak S., Vincent R., Goldberg M.S., Kreski D. (2000). Association between particulate- and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 12 (Suppl. 4):15–39
Campen M.J., Nolan J.P., Schladweiler M.C.J., Kodavanti U.P., Evansky P.A., Costa D.L., Watkinson W.P. (2001). Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: A potential interaction between nickel and vanadium sulfate. Toxicol. Sci. 64:243–252
Campen M.J., Watkinson W.P., Lehmann J.R., Costa D.L. (1996). Modulation of residual oil fly ash (ROFA) particle toxicity in rats by pulmonary hypertension and ambient temperature. Am. J. Respir. Crit. Care Med. 153:A542
Casman E.A., Morgan M.G., Dowlatabadi H. (1999). Mixed levels of uncertainty in complex policy models. Risk Anal. 19(1):33–42
Chalupa D.C., Morrow P.E., Oberdörster G., Utell M.J., Frampton M.W. (2004). Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect 112:879–882
Cheng Y.S., Yeh H.C., Guilmette R.A., Simpson S.Q., Cheng K.H., Swift D.L. (1996). Nasal deposition of ultrafine particles in human volunteers and its relationship to airway geometry. Aerosol Sci. Technol. 25:274–291
Coleman K.P., Toscano W.A. Jr., Wiese T.E. (2003). QSAR models of the in vitro estrogen activity of bis phenol A analogs. QSAR Comb. Sci. 22:78–88
Cooke R.M., 1991. Experts in Uncertainty: Opinion and Subjective Probability in Science. Oxford University Press.
Costa D.L., Lehmann J.R., Frazier L.T., Doerfler D., Ghio A. (1996). Pulmonary hypertension: A possible risk factor in particulate toxicity. Am. J. Respir. Crit. Care Med. 149:A840
Cullen R.T., Tran C.L., Buchanan D., Davis J.M.C., Searl A., Jones A.D., Donaldson K. (2000). Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal. Toxicol. 12(12):1089–1111
Dick C.A.J., Brown D.M., Donaldson K., Stone V. (2003). The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol. 15(1):39–52
Dockery D.W., Pope C.A. III, Xu X., Spengler J.D., Ware J.H., Fay M.E., Ferris B.G. Jr., Speizer F.E. (1993). An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329:1753–1759
Donaldson K., 1999. In: Shuker L. and Levy L. eds. Mechanisms for Toxicity: In vitro; IEH Report on: Approaches to Predicting Toxicity from Occupational Exposure to Dusts. Report R11. Page Bros., Norwich, UK, pp. 17–26.
Donaldson K., P.H. Beswick & P.S. Gilmour, 1996. Free radical activity associated with the surface of unifying factor in determining biological activity? Toxicol. Lett.(Pg) 1–3.
Donaldson K., Stone V., Gilmore P.S., Brown D.M., MacNee W. (2000). Ultrafine particles: Mechanisms of lung injury. Phil. Trans. R. Soc. Lond. A 358:2741–2749
Dreher K., R. Jaskot, J. Richards & J. Lehmann, 1996. Acute pulmonary toxicity of size-fractionated ambient air particulate matter. Am. J. Respir. Crit. Care Med. 153, A15.
Evans J.S., Gray G.M., Sielken R.L., Smith A.E., Valdez-Flores C., Graham J.D. (1994). Use of probabilistic expert judgment in distributional analysis of carcinogenic potency. Risk Anal. 20:15–34
Fairley D. (1999). Daily mortality and air pollution in Santa Clara County, California: 1989–1996. Environ. Health Perspect. 107:637–641
Ferin J., Oberdörster G., Penney D.P. (1992). Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Molec. Biol. 6:535–542
Genest C., Zidek J.V. (1986). Combining probability distributions: A critique and an annotated bibliography. Stat. Sci. 1: 114–148
Ghio A.J., Devlin R.B. (2001). Inflammatory lung injury after bronchial instillation of air pollution particles. Am. J. Respir. Crit. Care Med. 164:704–708
Ghio A.J., Kim C., Devlin R.B. (2000). Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am. J. Respir. Crit. Care Med. 162:981–988
Godleski J.J., Sioutas C., Katler M., Koutrakis P. (1996). Death from inhalation of concentrated ambient air particles in animal models of pulmonary disease. Am. J. Respir. Crit. Care Med. 153:A15
Hahn F.F., E.B. Barr, M. Ménache & J.C. Seagrave, 2005. Particle Size and Composition Related to Adverse Health Effects in Aged, Sensitive Rats. Research Report 129, Health Effects Institute, Cambridge, MA.
Hawkins N.C., Evans J.S. (1989). Subjective estimation of toluene exposures: A calibration study of industrial hygienists. Appl. Ind. Hyg. 4:61–68
Helmer O. (1966). Social Technology. Basic Book, New York
Heyder J., Gebhart J., Rudolf G., Schiller C.F., Stahlhofen W. (1986). Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Sci. 17:811–825
Ibald-Mulli A., Stieber J., Wichmann H.-E., Koenig W., Peters A. (2001). Effects of air pollution on blood pressure: A population based approach. Am. J. Public Health 91:571–577
International Commission on Radiological Protection (ICRP), 1994. Human Respiratory Tract Model for Radiological Protection, ICRP Publication 66. Pergamon Press, Elmsford, NY.
James A.C., W. Stahlhofen, G. Rudolf, R. Köbrich, J.K. Briant, M.J. Egan, W. Nixon & A. Birchall, 1994. In: Deposition of Inhaled Particles; Human Respiratory Tract Model for Radiological Protection, Annex D, Annals of the ICRP. Pergamon Press, Oxford, UK, pp. 231–299.
Jani P.U., Florence A.T., McCarthy D.E. (1992). Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int. J. Pharm. 84:245–252
Jani P.U., McCarthy D.E., Florence A.T. (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int. J. Pharm. 105:157–168
Jaques P.A., Kim C.S. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12:715–731
Jia G., Wang H., Yan L., Wang X., Pei R., Yan T., et al. (2005). Cytotoxicity of carbon nanomaterials: Single wall nanotube, multiwall nanotube, and fullerene. Environ. Sci. Technol. 39:1378–1383
Kahn H., Wiener A.J. (1967). The Year 2000, A Framework for Speculation. Macmillan, New York
Kandlikar M., J. Risbey & S. Dessai, 2005. Representing and communicating deep uncertainity in climate change assessment. C R Geosci 2337, 443–455
Kirchner C., Liedl T., Kudera S., Pellegrino T., Munoz J.A., Gaub H.E. et al. (2001). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5:331–338
Kreyling W., Semmler M., Erbe F., Mayer P., Takenaka S., Schulz H. et al. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size-dependent but very low. J. Toxicol. Environ. Health 65A:1513–1530
Kuhlbusch T.A., Neumann S., Fissan H. (2004). Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J. Occup. Environ. Hyg. 1(10):660–671
Lademann J., Weigmann H.-J., Rickmeyer C., Barthelmes H., Schaefer H., Mueller G., Sterry W. (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Appl. Skin Physiol. 12:247–256
Lam C.W., James J.T., McCluskey R., Arepalli S., Hunter R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. CRC Crit. Rev. Toxicol. 36:189–217
Lison D., Lardot C., Huaux F., Zanetti G., Fubini B. (1997). Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch. Toxicol. 71(12):725–729
Linstone H.A., Turoff M. (1975). The Delphi Method, Techniques and Applications. Addison Wesley, Reading, MA
Lippmann M. (1999). Sampling Criteria for Fine Fractions of Ambient Air. In: Vincent J.H. (eds), Particle Size-Selective Sampling for Particulate Air Contaminants. American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, pp. 97–118
Lippmann M., K. Ito, A. Nadas & R.T. Burnett, 2000. Association of particulate matter components with daily mortality and morbidity in urban populations. Research Report 95, Health Effects Institute, Cambridge, MA.
MacNee W., Donaldson K. (2003). Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur. Resp. J. 21:47S–51S
Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., Castranova V. (2004). Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A 67:87–107
Moghimi S.M., Hunter A.C., Murray J.C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53:283–318
Moolgavkar S.H., Luebeck E.G. (1996). A critical review of the evidence on particulate air pollution and mortality. Epidemiology 7:420–428
Moolgavkar S.H., Luebeck E.G., Hall T.A., Anderson E.L. (1995). Air pollution and daily mortality in Philadelphia. Epidemiology 6:476–484
Morgan M.G., Henrion M. (1990). Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge, University Press
Morgan M.G., Keith D.(1995). Subjective judgments by climate experts. Environ. Sci. Technol. 29(10):468–476
Morgan K. (2005). Development of a preliminary framework for informing the risk analysis and risk management of nanoparticles. Risk Anal. 25(6):1–15
Mossman B.T., Bignon J., Corn M., Seaton A., Gee J.B.L. (1990). Asbestos: Scientific developments and implications for public policy. Science 247:294–301
Nemmar A., Hoet P.H.M., Vanquickenborne B., Dinsdale D., Thomeer M., Hoylaerts M.F., Vanbilloen H., Mortelmans L., Nemery B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414
NRC/NAS Committee on the Institutional Means for Assessment of Risks to Public Health, Risk Assessment in the Federal Government (The Redbook), 1983.
Oberdörster G., Oberdörster E., Oberdörster J. (2005). Invited review: Nanotechnology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7):823–839
Oberdörster G., Ferin J., Lehnert B.E. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 102(Suppl. 5):173–179
Oberdörster G. (2000). Toxicology of ultrafine particles: In vivo studies. Philos. Trans. R. Soc. Lond., Ser. A 358:2719–2740
Oberdörster G., Gelein R.M., Ferin J., Weiss B. (1995).Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhal. Toxicol. 7: 111–124
Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C. (2005b). Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16:437–445
Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H., ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005c). Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fiber Toxicol. 2:8–43
Pekkanen J., Brunner E.J., Anderson H.R., Tiittanen P., Atkinson R.W. (2000). Daily concentrations of air pollution and plasma fibrinogen in London. Occup. Environ. Med. 57:818–822
Penttinen P., Timonen K.L., Tiittanen P., Mirme A., Ruuskanen J., Pekkanen J. (2001). Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Resp. J. 17:428–435
Peters A., Wichmann H.E., Tuch T., Heinrich J., Heyder J. (1997b). Respiratory effects are associated with the number of ultra-fine particles. Am. Respir. Crit. Care Med. 155:1376–1383
Peters A., Doring A., Wichmann H.-E., Koenig W. (1997a). Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet 349:1582–1587
Peters A., Frohlich M., Doring A., Immervoll T., Wichmann H-E., Hutchinson W.L., Pepys M.B., Koenig W. (2001). Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur. Heart J. 22:1198–1204
Phalen R.F. (1999). Airway Anatomy and Physiology. In: Vincent J.H. (eds), Particle Size-Selective Sampling for Particulate Air Contaminants. American Conference of Governmental Industrial Hygienists (ACGIH), Cincinnati, OH, USA
Pope C.A. III, Burnett R.T., Thun M.J., et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141
Preining O. (1998). The physical nature of very, very small particles and its impact on their behaviour. J. Aerosol Sci. 29:481–495
Quan C. & L.C. Chen, 2005. In: Toxicity of Manufactured Nanomaterials; Proceedings of the 2nd International Symposium on Nanotechnology and Occupational Health, Minneapolis, MN, p. 24.
Ramachandran G. (2001). Retrospective exposure assessment using Bayesian methods. Ann. Occup. Hyg. 45(8):651–667
Ramachandran G., Vincent J.H. (1999). A Bayesian approach to retrospective exposure assessment. Appl. Occup. Environ. Hyg. 14:547–557
Ramachandran G., Banerjee S., Vincent J.H. (2003) Expert judgment and occupational hygiene: Application to aerosol speciation in the nickel primary production industry. Ann. Occup. Hyg. 47:461–475
Ramachandran G., Watts W.F., Kittelson D. (2005). Mass, surface area, and number metric in diesel occupational exposure assessment. J. Environ. Monit. 7(7):728–735
Renwick L.C., Donaldson K., Clouter A. (2001). Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 172:119–127
Risbey J.S. & M. Kandlikar, 2002. Expert assessment of uncertainties in detection and attribution of climate change. Bull. Am. Meteorol. Soc. 1317–1326.
Risbey J.S., Kandlikar M., Karoly D.J. (2000). A protocol to articulate and quantify uncertainties in climate change detection and attribution. Climate Res. 16(1):61–78
Roco M.C., 2005, International perspective on government nanotechnology funding in 2005. JNR 7(6).
The Royal Society and The Royal Academy of Engineering, 2004. Nanoscience and Nanotechnologies: Opportunities and Uncertainties.
Salvi S., Blomberg A., Rudell B., Kelly F., Sandstrom T., Holgate S.T., Frew A. (1999). Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am. J. Respir. Crit. Care Med. 159:702–709
Salvi S., Nordenhall C., Blomberg A., Rudell B., Pourazer J., Kelly F.J., Wilson S., Sandstrom T., Holgate S.T., Frew, A. (2000). Acute exposure to diesel exhaust increases IL-8 and GRO-a production in healthy human airways. Am. J. Respir. Crit. Care Med. 161:550–557
Samet J.M., S.L. Zeger & K. Berhane, 1995. In: The Association of Mortality and Particulate Air Pollution; Particulate Air Pollution and Daily Mortality: Replication and Validation of Selected Studies (The Phase I.A Report of the Particle Epidemiology Evaluation Project). Health Effects Institute, Cambridge, MA, pp. 3–104.
Samet J.M., S.L. Zeger, F. Domenici, F. Curreiro, I. Coursac, D.W. Dockery, J. Schwartz & A. Zanobetti, 2000. The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity and Mortality from Air Pollution in the United States. Research Report 94, Health Effects Institute, Cambridge, MA.
Samet J.M., S.L. Zeger, J.E. Kelsall, J. Xu & L.S. Kalkstein, 1997. In: Weather, Air Pollution and Mortality in Philadelphia 1973–1980; Particulate Air Pollution and Daily Mortality: Analyses of the Effects of Weather and Multiple Air Pollutants (The Phae 1.B. Report of the Particle Epidemiology Evaluation Project). Health Effects Institute, Cambridge, MA, pp. 1–30.
Schulz J., Hohenberg H., Pflücker F., Gärtner E., Will T., Pfeiffer S., Wepf R., Wendel V., Gers-Barlag H., Wittern K.-P. (2002). Distribution of sunscreens on skin. Adv. Drug Deliv. Rev. 54(Suppl. 1): S157–S163
Schwartz J. (2001). Air pollution and blood markers of cartdiovascular risk. Environ. Health Perspect. 109 (Suppl. 3):405–409
Schwartz J. (1994). Air pollution and daily mortality: A review and meta analysis. Environ. Res. 64:36–52
Schwartz J., Dockery D.W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. Am. Rev. Respir. Dis. 145:600–604
Schwartz J., Dockery D.W., Neas L.M. (1996). Is daily mortality associated specifically with fine particles. J. Air Waste Manage. Assoc. 46:927–939
Scientific Committee on Cosmetic and Non-Food Products (SCCNFP), 2000. Opinion concerning Titanium Dioxide (Colipa n S75). SCCNP: Brussels, 2000 www.europa.eu.int/comm/health/ph_risk/committees/sccp/docshtml/sccp_out135_en.htm.
Seaton A., Soutar A., Crawford V., Elton R., McNerlan S., Cherrie J., Watt M., Agius R., Stout R. (1999). Particulate air pollution and the blood. Thorax 54:1027–1032
Seaton A., MacNee W., Donaldson K., Godden D. (1995). Particulate air pollution and acute health effects. Lancet 345:176–178
Service R.F. (2004). Nanotechnology grows up. Science 304:1732–1734
Sexton K., Callahan M.A., Bryan E.F. (1995). Estimating exposure and dose to characterize health risks: The role of human tissue monitoring in exposure assessment. Environ. Health Perspect. 103(Suppl. 3):13–29
Siegel J.E., Graham J.D., Stoto M.A. (1990). Allocating resources mong AIDS research strategies. Policy Sci. 23:1–23
Stone V., J. Shaw, D.M. Brown, W. MacNee, S.P. Faux & K.␣Donaldson, 1998. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol. In vitro 12(6), 649 (pp. 10).
Tan M.-H., Commens C.A., Burnett L., Snitch P.J. (1996). A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust. J. Dermatol. 37:185–187
Tran C.L., Buchanan D., Cullen R.T., Searl A., Jones A.D., Donaldson K. (2000). Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12(12):1113–1126
US Environmental Protection Agency, 2004. An Examination of EPA Risk Assessment Principles and Practices. Office of the Science Advisor. EPA/100/B-04/001.
US Environmental Protection Agency, 1996. Air Quality Criteria for Particulate Matter, EPA/600/P-95/001cf.
Utell M.J., Frampton M.W. (2000). Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J. Aerosol Med. 13(4):355–359
Vedal S. (1997). Ambient particles and health: Lines that divide. J. Air Waste Manage. Assoc. 475:551–581
Vincent R., P. Kumarathasan, P. Goegan, S.G. Bjarnason, J.␣Guenette, D. Berube, I.Y. Adamson, S. Desjardins, R.T. Burnett, F.J. Miller & B. Battistini, 2001. Inhalation Toxicology of Urban Ambient Particulate Matter: Acute Cardiovascular Effects in Rats. Research Report 104, Health Effects Institute, Boston, MA.
Walker K.D., Catalano P., Hammitt J.K., Evans J.S. (2003) Use of expert judgment in exposure assessment: Part 2. Calibration of expert judgments about personal exposures to benzene. J. Expo. Anal. Environ. Epidemiol. 13:1–16
Walker K.D., Macintosh D., Evans J.S. (2001). Use of expert judgment in exposure assessment: Part I. Characterization of personal exposure to benzene. J. Expo. Anal. Environ. Epidemiol. 11:308– 322
Warheit D.B., Brock W.J., Lee K.P., Webb T.R., Reed K.L. (2005a). Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: Impact of surface treatments on particle toxicity. Toxicol. Sci. 88(2):514–524
Warheit D.B., T.R. Webb, K.L. Reed, C. Sayes, Y. Liu & V.L. Colvin, 2005b. In: Pulmonary Effects of Nanoscale Titania and Quartz Particles: Role of Particle Size and Surface Area; Proceedings of the 2nd International Symposium on Nanotechnology and Occupational Health, Minneapolis, MN, p. 28.
Watkinson W.P., Campen M.J., Costa D.L. (1998). Cardiac arrhythmia induction after exposure to residual oil fly ash particles in a rodent model of pulmonary hypertension. Toxicol. Sci. 41:209–216
Wichmann H.-E., C. Spix, T. Tuch, G. Wolke, A. Peters, J.␣Heinrich, W.G. Kreyling & G. Heyder, 2000. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: Role of particle number and particle mass. Research Report 98, Health Effects Institute, Cambridge, MA.
Winkler R.L. (1986). Expert resolution. Manage. Sci. 32:298–306
Winkler R.L. (1968). The consensus of subjective probability distributions. Manage. Sci. 15(2):B61–B75
Wolff S.K., Hawkins N.C., Kennedy S.M., Graham J.D. (1990). Selecting experimental data for use in quantitative risk assessment: An expert judgment approach. Toxicol. Ind. Health 6:275–295