Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

Cell - Tập 173 - Trang 665-676.e14 - 2018
Silvana Konermann1,2, Peter Lotfy1,2, Nicholas J. Brideau1,2, Jennifer Oki1,2, Maxim N. Shokhirev3, Patrick D. Hsu1,2
1Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
2Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
3Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA

Tài liệu tham khảo

Abudayyeh, 2016, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, aaf5573, 10.1126/science.aaf5573 Abudayyeh, 2017, RNA targeting with CRISPR-Cas13, Nature, 550, 280, 10.1038/nature24049 Almeida, 2012, Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects, Cell Rep., 2, 789, 10.1016/j.celrep.2012.09.007 Anantharaman, 2013, Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing, Biol. Direct, 8, 15, 10.1186/1745-6150-8-15 Andronescu, 2007, Efficient parameter estimation for RNA secondary structure prediction, Bioinformatics, 23, i19, 10.1093/bioinformatics/btm223 Batra, 2017, Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9, Cell, 170, 899, 10.1016/j.cell.2017.07.010 Birmingham, 2006, 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets, Nat. Methods, 3, 199, 10.1038/nmeth854 Biswas, 2016, MMP-9 and MMP-2 contribute to neuronal cell death in iPSC models of frontotemporal dementia with MAPT mutations, Stem Cell Reports, 7, 316, 10.1016/j.stemcr.2016.08.006 Bland, 2007, CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats, BMC Bioinformatics, 8, 209, 10.1186/1471-2105-8-209 Boeve, 2008, Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN), Arch. Neurol., 65, 460, 10.1001/archneur.65.4.460 Cheong, 2006, Engineering RNA sequence specificity of Pumilio repeats, Proc. Natl. Acad. Sci. USA, 103, 13635, 10.1073/pnas.0606294103 Chiriboga, 2016, Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy, Neurology, 86, 890, 10.1212/WNL.0000000000002445 Chylinski, 2013, The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems, RNA Biol., 10, 726, 10.4161/rna.24321 Cox, 2017, RNA editing with CRISPR-Cas13, Science, 358, 1019, 10.1126/science.aaq0180 Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886 Dobin, 2013, STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15, 10.1093/bioinformatics/bts635 Doench, 2003, siRNAs can function as miRNAs, Genes Dev., 17, 438, 10.1101/gad.1064703 Doudna, 2014, Genome editing. The new frontier of genome engineering with CRISPR-Cas9, Science, 346, 1258096, 10.1126/science.1258096 Du, 2006, The dynamic alterations of H2AX complex during DNA repair detected by a proteomic approach reveal the critical roles of Ca(2+)/calmodulin in the ionizing radiation-induced cell cycle arrest, Mol. Cell. Proteomics, 5, 1033, 10.1074/mcp.M500327-MCP200 East-Seletsky, 2016, Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270, 10.1038/nature19802 East-Seletsky, 2017, RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes, Mol. Cell, 66, 373, 10.1016/j.molcel.2017.04.008 Edgar, 2007, PILER-CR: fast and accurate identification of CRISPR repeats, BMC Bioinformatics, 8, 18, 10.1186/1471-2105-8-18 Fonfara, 2016, The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA, Nature, 532, 517, 10.1038/nature17945 Gasiunas, 2012, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. USA, 109, E2579, 10.1073/pnas.1208507109 Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044 Gilbert, 2014, Genome-scale CRISPR-mediated control of gene repression and activation, Cell, 159, 647, 10.1016/j.cell.2014.09.029 Grissa, 2007, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res., 35, 10.1093/nar/gkm360 Guindon, 2010, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307, 10.1093/sysbio/syq010 Hammond, 2011, Genetic therapies for RNA mis-splicing diseases, Trends Genet., 27, 196, 10.1016/j.tig.2011.02.004 Heidrich, 2015, Investigating CRISPR RNA Biogenesis and Function Using RNA-seq, Methods Mol. Biol., 1311, 1, 10.1007/978-1-4939-2687-9_1 Heinz, 2010, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, 38, 576, 10.1016/j.molcel.2010.05.004 Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010 Jackson, 2003, Expression profiling reveals off-target gene regulation by RNAi, Nat. Biotechnol., 21, 635, 10.1038/nbt831 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Kar, 2005, Tau alternative splicing and frontotemporal dementia, Alzheimer Dis. Assoc. Disord., 19, S29, 10.1097/01.wad.0000183082.76820.81 Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772, 10.1093/molbev/mst010 Kim, 2017, In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni, Nat. Commun., 8, 14500, 10.1038/ncomms14500 Langmead, 2012, Fast gapped-read alignment with Bowtie 2, Nat. Methods, 9, 357, 10.1038/nmeth.1923 Liu, 2017, Two distant catalytic sites are responsible for C2c2 RNase activities, Cell, 168, 121, 10.1016/j.cell.2016.12.031 Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 10.1186/s13059-014-0550-8 Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569 Matera, 2014, A day in the life of the spliceosome, Nat. Rev. Mol. Cell Biol., 15, 108, 10.1038/nrm3742 Naldini, 2015, Gene therapy returns to centre stage, Nature, 526, 351, 10.1038/nature15818 O’Connell, 2014, Programmable RNA recognition and cleavage by CRISPR/Cas9, Nature, 516, 263, 10.1038/nature13769 Orengo, 2006, A bichromatic fluorescent reporter for cell-based screens of alternative splicing, Nucleic Acids Res., 34, e148, 10.1093/nar/gkl967 Peabody, 1993, The RNA binding site of bacteriophage MS2 coat protein, EMBO J., 12, 595, 10.1002/j.1460-2075.1993.tb05691.x Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299 Samai, 2015, Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity, Cell, 161, 1164, 10.1016/j.cell.2015.04.027 Schena, 1995, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 270, 467, 10.1126/science.270.5235.467 Schoch, 2016, Increased 4R-tau induces pathological changes in a human-tau mouse model, Neuron, 90, 941, 10.1016/j.neuron.2016.04.042 Shendure, 2017, DNA sequencing at 40: past, present and future, Nature, 550, 345, 10.1038/nature24286 Shmakov, 2015, Discovery and functional characterization of diverse class 2 CRISPR-Cas systems, Mol. Cell, 60, 385, 10.1016/j.molcel.2015.10.008 Sievers, 2011, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 7, 539, 10.1038/msb.2011.75 Sigoillot, 2012, A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens, Nat. Methods, 9, 363, 10.1038/nmeth.1898 Smargon, 2017, Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28, Mol. Cell, 65, 618, 10.1016/j.molcel.2016.12.023 Smith, 2017, Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map, PLoS Biol., 15, e2003213, 10.1371/journal.pbio.2003213 Swiech, 2015, In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9, Nat. Biotechnol., 33, 102, 10.1038/nbt.3055 Treu, 2016, Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes, Bioresour. Technol., 216, 260, 10.1016/j.biortech.2016.05.081 van der Oost, 2014, Unravelling the structural and mechanistic basis of CRISPR-Cas systems, Nat. Rev. Microbiol., 12, 479, 10.1038/nrmicro3279 Wang, 2015, Mechanism of alternative splicing and its regulation, Biomed. Rep., 3, 152, 10.3892/br.2014.407 Wright, 2016, Protecting genome integrity during CRISPR immune adaptation, Nat. Struct. Mol. Biol., 23, 876, 10.1038/nsmb.3289 Yang, 2010, Proteomic dissection of cell type-specific H2AX-interacting protein complex associated with hepatocellular carcinoma, J. Proteome Res., 9, 1402, 10.1021/pr900932y Yosef, 2012, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res., 40, 5569, 10.1093/nar/gks216 Zalatan, 2015, Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds, Cell, 160, 339, 10.1016/j.cell.2014.11.052 Zetsche, 2015, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, 163, 759, 10.1016/j.cell.2015.09.038 Zetsche, 2017, A survey of genome editing activity for 16 Cpf1 orthologs, bioRxiv Zhang, 2013, Rapid single-step induction of functional neurons from human pluripotent stem cells, Neuron, 78, 785, 10.1016/j.neuron.2013.05.029 Zhang, 2016, Multiple nucleic acid cleavage modes in divergent type III CRISPR systems, Nucleic Acids Res., 44, 1789, 10.1093/nar/gkw020