Some properties of fuzzy implications based on copulas
Tài liệu tham khảo
M. Baczyński, G. Beliakov, H. Bustince, A. Pradera (Eds.), Advances in Fuzzy Implication Functions, Vol. 300 of Studies in Fuzziness and Soft Computing, Springer, Berlin Heidelberg, 2013.
Baczyński, 2016, Properties of the probabilistic implications and s-implications, Inform. Sci, 331, 2, 10.1016/j.ins.2015.10.037
Baczyński, 2008, Fuzzy implications
Capéraá, 2000, Bivariate distributions with given extreme value attractor, J. Multivariate Anal, 72, 30, 10.1006/jmva.1999.1845
Dolati, 2013, A copula-based family of fuzzy implication operators, Fuzzy Sets Syst., 211, 51, 10.1016/j.fss.2012.05.007
Durante, 2012, Invariant dependence structure under univariate truncation, Statistics, 46, 263, 10.1080/02331888.2010.512977
Fodor, 1995, Contrapositive symmetry of fuzzy implications, Fuzzy Sets Syst., 69, 141, 10.1016/0165-0114(94)00210-X
Fodor, 1994
Frank, 1979, On the simultaneous associativity of F(x, y) and x+y−F(x,y), Aequationes Mathematicae, 19, 194, 10.1007/BF02189866
Grzegorzewski, 2011, On the properties of probabilistic implications, 67
Grzegorzewski, 2011, Probabilistic implications, 254
Grzegorzewski, 2013, Probabilistic implications, Fuzzy Sets Syst., 226, 53, 10.1016/j.fss.2013.01.003
Helbin, 2018, The law of contraposition and the law of importation for probabilistic S-implications, 226
Jayaram, 2008, On the law of importation (x∧y) → z ≡ (x → (y → z)) in fuzzy logic, IEEE trans, Fuzzy Syst., 16, 130, 10.1109/TFUZZ.2007.895969
Klement, 2000
Klement, 2002, Invariant copulas, Kybernetika, 38, 275
Kuczma, 1985, An Introduction to the Theory of Functional Equations and Inequalities
Massanet, 2011, The law of importation versus exchange principle on fuzzy implications, Fuzzy Sets Syst., 168, 2111, 10.1016/j.fss.2010.12.012
Massanet, 2012, On the characterization of Yager’s implications, Inform. Sci, 201, 1, 10.1016/j.ins.2012.03.008
Mesiar, 2010, Ducs copulas, Kybernetika, 46, 1069
Nelsen, 2006
Rudin, 1987