Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 33 - Trang 2817-2824 - 2002
Tóm tắt
A significant improvement in the degree of superelasticity in Cu-Al-Mn ductile polycrystalline alloys has been achieved through the addition of Ni and control of the recrystallization texture by thermomechanical processing, which contain the annealing in the fcc (α) + bcc (β) two-phase region, followed by heavy cold reductions of over 60 pct. The addition of Ni to the Cu-Al-Mn alloys shows a drastic effect on the formation of the strong {112} 〈110〉 recrystallization texture. Superelastic strains on the order of 7 pct, 3 times larger than those in other Cu-based shape-memory alloys (SMAs), have been realized in the textured Cu-Al-Mn-Ni alloys. The superelastic strains obtainable in the textured Cu-based SMAs are on a par with those attainable in Ni-Ti-based alloys.
Tài liệu tham khảo
T. Tadaki: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge Univeristy Press, Cambridge, United Kingdom, 1998, pp. 97–116.
J. Van Humbeeck and L. Delaey: in The Martensitic Transformation in Science and Technology, E. Hornbogen and N. Jost, eds., Butterworth-Heinemann, London, 1990, pp. 15–25.
S. Miyazaki and K. Otsuka: Iron Steel Inst. Jpn. Int., 1989, vol. 29, pp. 353–76.
R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, and K. Ishida: J. Alloys Compounds, 1998, vol. 266, pp. 191–200.
R. Kainuma, S. Takahashi, and K. Ishida: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2187–95.
R. Kainuma, S. Takahashi, and K. Ishida: J. Phys. IV, 1995, vol. 5 (C8), pp. 961–66.
Y. Sutou, R. Kainuma, and K. Ishida: Mater. Sci. Eng. A, 1999, vols. A273–A275, pp. 375–79.
Y. Sutou: Ph.D. Thesis, Tohoku University, Sendai, Japan, 2001.
S. Eucken and J. Hhirsch: Mater. Sci. Forum, 1990, vols. 56–58, pp. 487–92.
D.Y. Li, X.F. Wu, and T. Ko: Acta Mater., 1990, vol. 38, pp. 19–24.
H. Inoue, N. Miwa, and N. Inakazu: Acta Mater., 1996, vol. 44, pp. 4825–34.
L. Zhao, P.F. Willemse, J.H. Mulder, J. Beyer, and W. Wei: Scripta Mater., 1998, vol. 39, pp. 1317–23.
Y.C. Shu and K. Bhattacharya: Acta Mater., 1998, vol. 46, pp. 5457–73.
W. Chaoqun: Proc. Int. Symp. on Shape Memory Materials on Shape Memory Materials ’94, C. Youyi and T. Hailing, eds., International Academic Publishers, Beijing, 1994, pp. 388–92.
P. Donner and S. Eucken: Mater. Sci. Forum, 1990, vols. 56–58, pp. 723–28.
B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.
X.J. Liu: Ph.D. Thesis, Tohoku University, Sendai, Japan, 1998.
M.S. Wechsler, D.S. Lieberman, and T.A. Read: Trans. AIME, 1953, vol. 197, pp. 1503–15.
J.S. Bowles and J.K. Mackenzie: Acta Metall., 1954, vol. 2, pp. 129–37.
K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, and K. Shimizu: Acta Metall., 1976, vol. 24, pp. 207–26.
T. Saburi and S. Nenno: Proc. Int. Conf. on Solid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.E. Sekerka, and C.M. Wayman, eds., AIME, New York, NY, 1982, pp. 1455–79.
H. Horikawa, S. Ichinose, S. Morii, S. Miyazaki, and K. Otsuka: Metall. Trans. A, 1988, vol. 19A, pp. 915–23.
H. Kato, T. Ozu, S. Hashimoto, and S. Miura: Mater. Sci. Eng. A, 1999, vol. A264, pp. 245–53.
N. Ono, A. Sato, and H. Ohta: Mater. Trans. JIM, 1989, vol. 30, pp. 756–64.
I. Dvorak and E.B. Hawbolt: Metall. Trans. A, 1976, vol. 6A, pp. 95–99.
Y. Sutou, T. Omori, J.J. Wang, R. Kainuma, and K. Ishida: Tohoku University Sendai, unpublished research, 2002.
Y. Suzuki: in Shape Memory Materials, K. Otsuka and C. M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 133–48.