AlgebraicK-theory and quadratic forms

Springer Science and Business Media LLC - Tập 9 - Trang 318-344 - 1970
John Milnor1
1Mathematics Department, Massachusetts Institute of Technology, Cambridge, USA

Tài liệu tham khảo

Artin, E.: Algebraic numbers and algebraic functions. New York: Gordon and Breach 1967. Bass, H.:K 2 and symbols, pp. 1–11 of AlgebraicK-theory and its geometric applications. Lecture Notes in Mathematics, Vol.108. Berlin-Heidelberg-New York: Springer 1969. Bass, H.: Tate, J.:K 2 of global fields (in preparation). Birch, B. J.:K 2 of global fields (mimeographed proceedings of conference, S.U.N.Y. Stony Brook 1969). Delzant, A.: Definition des classes de Stiefel-Whitney d'un module quadratique sur un corps de caractéristique différente de 2. C. R. Acad. Sci. Paris255, 1366–1368 (1962). Kaplansky, I., Shaker, R. J.: Abstract quadratic forms. Canad. J. Math.21, 1218–1233 (1969). Kervaire, M.: Multiplicateurs de Schur etK-théorie (to appear in de Rham Festschrift). Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples deployés. Ann. Sci. Ec. Norm Sup. 4e série2, 1–62 (1969). Milnor, J.: Notes on algebraicK-theory (to appear). Moore, C.: Group extensions ofp-adic and adelic linear groups. Publ. Math. I.H.E.S.35, 5–74 (1969). Nobile, A., Villamayor, O.: Sur laK-théorie algébrique. Ann. Sci. Ec. Norm. Sup. 4e série1, 581–616 (1968). O'Meara, O. T.: Introduction to quadratic forms. Berlin-Göttingen-Heidelberg: Springer 1963. Pfister, A.: Quadratische Formen in beliebigen Körpern. Inventiones math.1, 116–132 (1966). Scharlau, W.: Quadratische Formen und Galois-Cohomologie. Inventiones math.4, 238–264 (1967). Serre, J. P.: Cohomologie Galoisienne. Lecture Notes in Mathematics, Vol.5. Berlin-Heidelberg-New York: Springer 1964. Springer, T. A.: Quadratic forms over a field with a discrete valuation. Indag. Math.17, 352–362 (1955). Swan, R.: AlgebraicK-theory. Lecture Notes in Mathematics, Vol.76. Berlin-Heidelberg-New York: Springer 1968. Swan, R.: Non-abelian homological algebra andK-theory, (mimeographed) Univ. of Chicago, 1968. Tate, J.: Duality theorems in Galois cohomology over number fields. Proc. Int. Congr. Math. Stockholm, 288–295 (1963). Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1967.