Modern biopolyamide-based materials: synthesis and modification
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109:2437–2459. https://doi.org/10.1002/bit.24599
Winnacker M, Rieger B (2016) Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun 37:1391–1413. https://doi.org/10.1002/marc.201600181
Douka A, Vouyiouka S, Papaspyridi L-M, Papaspyrides CD (2018) A review on enzymatic polymerization to produce polycondensation polymers: the case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 79:1–25. https://doi.org/10.1016/J.PROGPOLYMSCI.2017.10.001
Gorrasi G, Bugatti V, Ussia M, Mendichi R, Zampino D, Puglisi C, Carroccio SC (2018) Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polym Degrad Stab 152:43–51. https://doi.org/10.1016/j.polymdegradstab.2018.03.015
Otaegi I, Aramburu N, Müller A, Guerrica-Echevarría G (2018) Novel biobased polyamide 410/polyamide 6/CNT nanocomposites. Polymers (Basel) 10:986. https://doi.org/10.3390/polym10090986
Rashmi BJ, Prashantha K, Lacrampe MF, Krawczak P (2018) Scalable production of multifunctional bio-based polyamide 11/graphene nanocomposites by melt extrusion processes via masterbatch approach. Adv Polym Technol 37:1067–1075. https://doi.org/10.1002/adv.21757
Kristufek SL, Wacker KT, Tsao Y-YT, Su L, Wooley KL (2017) Monomer design strategies to create natural product-based polymer materials. Nat Prod Rep 34:433–459. https://doi.org/10.1039/C6NP00112B
Aeschelmann F, Carus M (2015) Biobased building blocks and polymers in the world: capacities, production, and applications–status quo and trends towards 2020. Ind Biotechnol. https://doi.org/10.1089/ind.2015.28999.fae
Kuciel S, Kuzniar P, Liber-Kneć A (2012) Polyamides from renewable sources as matrices of short fiber reinforced biocomposites. Polimery 57:627–634. https://doi.org/10.14314/polimery.2012.627
Kabasci S (2003) Biobased plastics. Wiley, Chichester
Mubofu EB (2016) Castor oil as a potential renewable resource for the production of functional materials. Sustain Chem Process 4:11. https://doi.org/10.1186/s40508-016-0055-8
Dasari S, Goud V (2013) Comparative extraction of castor seed oil using polar and non polar solvents. In: Proceedings of national conference on ‘Women in Science & Engineering’ (NCWSE 2013), International journal of current engineering and technology special issue 1. SDMCET Dharwad, pp 121–123
Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091. https://doi.org/10.1016/j.biortech.2005.03.028
Nangbes JG, Nvau JB, Buba WM, Zukdimma AN (2013) Extraction and characterization of castor (Ricinus communis) seed oil. Int J Eng Sci 2:105–109. https://doi.org/10.1016/j.indcrop.2012.07.022
Imankulov N (2012) Preparation and research on properties of castor oil as a diesel fuel additive. Appl Technol Innov 6:30–37. https://doi.org/10.15208/ati.2012.4
Harmsen P, Hackmann M, Bos H (2014) Perspective: Green building blocks for bio-based plastics. Biofuels Bioprod Biorefin 8:306–324. https://doi.org/10.1002/bbb
Anderson D, Anderson, Dan (2005) A primer on oils processing technology. In: Bailey’s industrial oil and fat products. Wiley, Hoboken, pp 1–56
Naughton FC (1974) Production, chemistry, and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71. https://doi.org/10.1007/BF00000015
Mutlu H, Meier MAR (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112:10–30. https://doi.org/10.1002/ejlt.200900138
Dytham RA, Weedon BCL (1960) Organic reactions in strong alkalis-III. Fission of keto- and hydroxy-acids. Tetrahedron 8:246–260. https://doi.org/10.1016/0040-4020(60)80033-6
Diamond MJ, Binder RG, Applewhite TH (1965) Alkaline cleavage of hydroxy unsaturated fatty acids. I. Ricinoleic acid and lesquerolic acid. J Am Oil Chem Soc 42:882–884. https://doi.org/10.1007/BF02541184
Jasinska L, Villani M, Wu J, Van Es D, Klop E, Rastogi S, Koning CE (2011) Novel, fully biobased semicrystalline polyamides. Macromolecules 44:3458–3466. https://doi.org/10.1021/ma200256v
Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211. https://doi.org/10.1021/bp010179x
De Guzman D (2013) Verdezyne seeks Asian market for bio-adipic acid|Green Chemicals Blog. https://greenchemicalsblog.com/2013/06/20/verdezyne-seeks-asian-market-for-bio-adipic-acid/ . Accessed 7 May 2017
Diamond GM, Murphy V, Boussie TR (2014) Application of high throughput experimentation to the production of commodity chemicals from renewable feedstock. In: Hagemeyer A, Volpe AF (eds) Modern application of high throughput R&D in heterogeneous catalysis. Bentham Science Publishers, California, pp 288–309
Wang M-S, Huang J-C (1994) Nylon 1010 properties and applications. J Polym Eng 13:155–174. https://doi.org/10.1515/POLYENG.1994.13.2.155
Qian ZG, Xia XX, Lee SY (2009) Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol Bioeng 104:651–662
Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8:557–570. https://doi.org/10.1002/biot.201200367
Yan Y, Gooneie A, Ye H, Deng L, Qiu Z, Reifler FA, Hufenus R (2018) Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate. Macromol Mater Eng 303:1800214. https://doi.org/10.1002/mame.201800214
Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, von Abendroth G, Zelder O, Wittmann C (2014) From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123. https://doi.org/10.1016/j.ymben.2014.05.007
Frost J (2005) Synthesis of caprolactam from lysine. WO Pat. 2,005,123,669 1:1–10
Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chemie 123:7221–7225. https://doi.org/10.1002/ange.201102156
Kim K-S, Yu AJ (1979) Copolyamides derived from brassylic acid. J Appl Polym Sci 23:439–444. https://doi.org/10.1002/app.1979.070230213
An alternative raw material for polyamide 12: Evonik is operating a pilot plant for bio-based ω-amino lauric acid. https://corporate.evonik.de/en/media/search/pages/news-details.aspx?newsid=37328 . Accessed 28 Nov 2018
Kolb N, Winkler M, Syldatk C, Meier MAR (2014) Long-chain polyesters and polyamides from biochemically derived fatty acids. Eur Polym J 51:159–166. https://doi.org/10.1016/j.eurpolymj.2013.11.007
Stempfle F, Quinzler D, Heckler I, Mecking S (2011) Long-chain linear C 19 and C 23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules 44:4159–4166. https://doi.org/10.1021/ma200627e
Bennett C, Mathias LJ (2004) Linear unsaturated polyamides: nylons 6 U18 and 18 U18. Macromol Chem Phys 205:2438–2442. https://doi.org/10.1002/macp.200400351
Mutlu H, Meier MAR (2009) Unsaturated PA X,20 from renewable resources via metathesis and catalytic amidation. Macromol Chem Phys 210:1019–1025. https://doi.org/10.1002/macp.200900045
Walther G, Deutsch J, Martin A, Baumann F-E, Fridag D, Franke R, Köckritz A (2011) α, ω-Functionalized C19 monomers. Chemsuschem 4:1052–1054. https://doi.org/10.1002/cssc.201100187
Winkler M, Steinbiß M, Meier MAR (2014) A more sustainable Wohl–Ziegler bromination: versatile derivatization of unsaturated FAMEs and synthesis of renewable polyamides. Eur J Lipid Sci Technol 116:44–51. https://doi.org/10.1002/ejlt.201300126
Winkler M, Meier MAR (2014) Highly efficient oxyfunctionalization of unsaturated fatty acid esters: an attractive route for the synthesis of polyamides from renewable resources. Green Chem 16:1784–1788. https://doi.org/10.1039/C3GC41921E
Türünç O, Firdaus M, Klein G, Meier MAR (2012) Fatty acid derived renewable polyamides via thiol–ene additions. Green Chem 14:2577. https://doi.org/10.1039/c2gc35982k
Chen X, Zhong H, Jia L, Ning J, Tang R, Qiao J, Zhang Z (2002) Polyamides derived from piperazine and used for hot-melt adhesives: synthesis and properties. Int J Adhes Adhes 22:75–79. https://doi.org/10.1016/S0143-7496(01)00039-2
Hablot E, Donnio B, Bouquey M, Avérous L (2010) Dimer acid-based thermoplastic bio-polyamides: Reaction kinetics, properties and structure. Polymer (Guildf) 51:5895–5902. https://doi.org/10.1016/j.polymer.2010.10.026
Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: Recent advances. Prog Polym Sci 48:1–39. https://doi.org/10.1016/j.progpolymsci.2014.11.002
Bou JJ, Rodriguez-Galan A, Munoz-Guerra S (1993) Optically active polyamides derived from L-tartaric acid. Macromolecules 26:5664–5670. https://doi.org/10.1021/ma00073a020
Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D
Jiang Y, Maniar D, Woortman AJJ, Alberda van Ekenstein GOR, Loos K (2015) Enzymatic polymerization of furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromol 16:3674–3685. https://doi.org/10.1021/acs.biomac.5b01172
Ali MA, Tateyama S, Kaneko T (2014) Syntheses of rigid-rod but degradable biopolyamides from itaconic acid with aromatic diamines. Polym Degrad Stab 109:367–372. https://doi.org/10.1016/j.polymdegradstab.2014.05.031
Ali MA, Tateyama S, Oka Y, Kaneko D, Okajima MK, Kaneko T (2013) Syntheses of high-performance biopolyamides derived from itaconic acid and their environmental corrosion. Macromolecules 46:3719–3725. https://doi.org/10.1021/ma400395b
Wang Z, Wei T, Xue X, He M, Xue J, Song M, Wu S, Kang H, Zhang L, Jia Q (2014) Synthesis of fully bio-based polyamides with tunable properties by employing itaconic acid. Polymer (Guildf) 55:4846–4856. https://doi.org/10.1016/J.POLYMER.2014.07.034
Wang Q, Shao ZZ, Yu TY (1996) The synthesis and characterization of polyethylene succinamide (polyamide 24). Polym Bull 36:659–665. https://doi.org/10.1007/BF00338627
Dreyfuss P, Keller A (1973) Invariance of the long spacing–crystallization temperature dependence of polyamides precipitated from solution. J Polym Sci Part A-2 Polym Phys 11:193–200. https://doi.org/10.1002/pol.1973.180110201
Gaymans RJ, Van Utteren TEC, Van Den Berg JWA, Schuyer J (1977) Preparation and some properties of nylon 46. J Polym Sci Polym Chem Ed 15:537–545. https://doi.org/10.1002/pol.1977.170150303
Winkler M, Raupp YS, Ko LAM, Wagner HE, Meier MAR (2014) Modified poly(ε-caprolactone)s: an efficient and renewable access via Thia–Michael addition and Baeyer–Villiger oxidation. Macromolecules 47:2842–2846. https://doi.org/10.1021/ma500381n
Winnacker M, Sag J, Tischner A, Rieger B (2017) Sustainable, stereoregular, and optically active polyamides via cationic polymerization of ε-lactams derived from the terpene β-pinene. Macromol Rapid Commun 38:1–7. https://doi.org/10.1002/marc.201600787
van Velthoven JLJ, Gootjes L, Noordover BAJ, Meuldijk J (2015) Bio-based, amorphous polyamides with tunable thermal properties. Eur Polym J 66:57–66. https://doi.org/10.1016/j.eurpolymj.2015.01.040
Sun Z, Wang X, Guo F, Jiang C, Pan Q (2016) Isothermal and nonisothermal crystallization kinetics of bio-sourced nylon 69. Chinese J Chem Eng 24:638–645. https://doi.org/10.1016/J.CJCHE.2015.12.021
Fukuda Y, Sasanuma Y (2018) Computational characterization of nylon 4, a biobased and biodegradable polyamide superior to nylon 6. ACS Omega 3:9544–9555. https://doi.org/10.1021/acsomega.8b00915
Jasinska-Walc L, Villani M, Dudenko D, Van Asselen O, Klop E, Rastogi S, Hansen MR, Koning CE (2012) Local conformation and cocrystallization phenomena in renewable diaminoisoidide-based polyamides studied by FT-IR, solid state NMR, and WAXD. Macromolecules 45:2796–2808. https://doi.org/10.1021/ma300133d
Rwei S-P, Ranganathan P, Chiang W-Y, Lee Y-H (2018) Synthesis and characterization of copolyamides derived from novel aliphatic bio-based diamine. J Appl Polym Sci 135:46878. https://doi.org/10.1002/app.46878
Eltahir YA, Saeed HAM, Xia Y, Yong H, Yimin W (2015) Mechanical properties, moisture absorption, and dyeability of polyamide 5,6 fibers. J Text Inst. https://doi.org/10.1080/00405000.2015.1020678
Martino L, Basilissi L, Farina H, Ortenzi MA, Zini E, Di Silvestro G, Scandola M (2014) Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur Polym J 59:69–77. https://doi.org/10.1016/j.eurpolymj.2014.07.012
Samanta S, He J, Selvakumar S, Lattimer J, Ulven C, Sibi M, Bahr J, Chisholm BJ (2013) Polyamides based on the renewable monomer, 1,13-tridecane diamine II: Synthesis and characterization of nylon 13,6. Polymer (Guildf) 54:1141–1149. https://doi.org/10.1016/j.polymer.2012.12.034
Iribarren I, Alemán C, Bou JJ, Muñoz-Guerra S (1996) Crystal structures of optically active polyamides derived from di-O-methyl-l-tartaric acid and 1,n-alkanediamines: a study combining energy calculations, diffraction analysis, and modeling simulations. Macromolecules 2:2. https://doi.org/10.1021/ma951394v
Muñoz-Guerra S, Fernández CE, Benito E, Marín R, García-Martín MG, Bermúdez M, Galbis JA (2009) Crystalline structure and crystallization of stereoisomeric polyamides derived from arabinaric acid. Polymer (Guildf) 50:2048–2057. https://doi.org/10.1016/J.POLYMER.2009.02.014
Kim SJ, Kim BJ, Jang DW, Kim SH, Park SY, Lee J-H, Lee S-D, Choi DH (2001) Photoactive polyamideimides synthesized by the polycondensation of azo-dye diamines and rosin derivative. J Appl Polym Sci 79:687–695. https://doi.org/10.1002/1097-4628(20010124)79:4%3c687:AID-APP130%3e3.0.CO;2-9
Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040
Saheb N, Jog J (2015) Natural fiber polymer composites : a review. Adv Polym Technol 2329:351–363. https://doi.org/10.1002/(SICI)1098-2329(199924)18
Madsen B, Gamstedt EK (2013) Wood vs. plant fibers : similarities and differences in composite applications. Adv Mater Sci Eng 2013:1–43
Bledzki Sperber F (2002) Natural and wood fibre reinforcement in polymers. Smithers Rapra Publishing, Akron
Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053. https://doi.org/10.1016/j.euromechsol.2005.05.006
Zierdt P, Theumer T, Kulkarni G, Däumlich V, Klehm J, Hirsch U, Weber A (2015) Sustainable wood–plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustain Mater Technol 6:6–14. https://doi.org/10.1016/j.susmat.2015.10.001
Armioun S, Panthapulakkal S, Scheel J, Tjong J, Sain M (2016) Biopolyamide hybrid composites for high performance applications. J Appl Polym Sci 133:1–9. https://doi.org/10.1002/app.43595
Armioun S, Panthapulakkal S, Scheel J, Tjong J, Sain M (2016) Sustainable and lightweight biopolyamide hybrid composites for greener auto parts. Can J Chem Eng 94:2052–2060. https://doi.org/10.1002/cjce.22609
Nishitani Y, Yamanaka T (2016) Thermal properties of hemp fiber reinforced plant-derived polyamide biomass composites and their dynamic viscoelastic properties in molten state. In: El-Amin M (ed) Viscoelastic and viscoplastic materials. INTECH, pp 52–79
Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres—processing and properties. Compos Sci Technol 100:113–120. https://doi.org/10.1016/j.compscitech.2014.06.008
Hablot E, Matadi R, Ahzi S, Vaudemond R, Ruch D, Avérous L (2010) Yield behaviour of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres. Compos Sci Technol 70:525–529. https://doi.org/10.1016/J.COMPSCITECH.2009.12.009
Leszczyńska A, Kiciliński P, Pielichowski K (2015) Biocomposites of polyamide 4.10 and surface modified microfibrillated cellulose (MFC): influence of processing parameters on structure and thermomechanical properties. Cellulose 22:2551–2569. https://doi.org/10.1007/s10570-015-0657-4
Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutjé P (2016) Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites. Compos Sci Technol 132:123–130. https://doi.org/10.1016/j.compscitech.2016.07.004
Oliver-Ortega H, Granda LA, Espinach FX, Delgado-Aguilar M, Duran J, Mutjé P (2016) Stiffness of bio-based polyamide 11 reinforced with softwood stone ground-wood fibres as an alternative to polypropylene-glass fibre composites. Eur Polym J 84:481–489. https://doi.org/10.1016/j.eurpolymj.2016.09.062
Le Duigou A, Bourmaud A, Gourier C, Baley C (2016) Multi-scale shear properties of flax fibre reinforced polyamide 11 biocomposites. Compos Part A Appl Sci Manuf 85:123–129. https://doi.org/10.1016/j.compositesa.2016.03.014
Boumbimba RM, Wang K, Hablot E, Bahlouli N, Ahzi S, Avérous L (2017) Renewable biocomposites based on cellulose fibers and dimer fatty acid polyamide: Experiments and modeling of the stress–strain behavior. Polym Eng Sci 57:95–104. https://doi.org/10.1002/pen.24390
Nikiforov AA, Vol’fson SI, Okhotina NA, Rinberg R, Hartmann T, Kroll L (2017) Mechanical properties of the compositions based on biopolyamide-1010 modified by carbon, glass, and cellulose chopped fibers. Russ Metall 2017:279–282. https://doi.org/10.1134/s0036029517040152
Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112. https://doi.org/10.1016/J.COMPOSITESA.2015.08.038
Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008
Pagacz J, Leszczynska A, Modesti M, Boaretti C, Roso M, Malka I, Pielichowski K (2015) Thermal decomposition studies of bio-resourced polyamides by thermogravimetry and evolved gas analysis. Thermochim Acta 612:40–48. https://doi.org/10.1016/j.tca.2015.05.003
Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) Bio-polyamides based on renewable raw materials: Glass transition and crystallinity studies. J Therm Anal Calorim 123:1225–1237. https://doi.org/10.1007/s10973-015-4929-x
Leszczyńska A, Stafin K, Pagacz J, Mičušík M, Omastova M, Hebda E, Pielichowski J, Borschneck D, Rose J, Pielichowski K (2018) The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. Ind Crops Prod 116:97–108. https://doi.org/10.1016/j.indcrop.2018.02.022
Hablot E, Matadi R, Ahzi S, Avérous L (2010) Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties. Compos Sci Technol 70:504–509. https://doi.org/10.1016/j.compscitech.2009.12.001
Kuciel S, Kuÿnia P, Jakubowska P (2016) Properties of composites based on polyamide 10. 10 reinforced with carbon fibers. Polimery 61:106–112
Kuciel S, Kuzniar P, Bogucki R (2014) Kompozyty na osnowie biopoliamidu z maczka lupin orzecha modyfikowane powierzchniowo nanoczastkami srebra. Przetwórstwo Tworzyw 6:507–511
Ghaffari Mosanenzadeh S, Liu MW, Osia A, Naguib HE (2015) Thermal composites of biobased polyamide with boron nitride micro networks. J Polym Environ 23:566–579. https://doi.org/10.1007/s10924-015-0733-8
Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay. Compos Part A Appl Sci Manuf 81:193–201. https://doi.org/10.1016/j.compositesa.2015.11.022
Hajibeygi M, Omidi-Ghallemohamadi M (2017) One-step synthesized azo-dye modified Mg-Al LDH reinforced biobased semi-aromatic polyamide containing naphthalene ring; study on thermal stability and optical properties. J Polym Res. https://doi.org/10.1007/s10965-017-1212-9
Mandlekar N, Cayla A, Rault F, Giraud S, Salaün F, Malucelli G, Guan J (2017) Thermal stability and fire retardant properties of polyamide 11 microcomposites containing different lignins. Ind Eng Chem Res 56:13704–13714. https://doi.org/10.1021/acs.iecr.7b03085