Laticifers, Latex, and Their Role in Plant Defense

Trends in Plant Science - Tập 24 - Trang 553-567 - 2019
Márcio Viana Ramos1, Diego Demarco2, Isabel Cristina da Costa Souza1, Cleverson Diniz Teixeira de Freitas1
1Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
2Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, CEP 05508-090, Brazil

Tài liệu tham khảo

Hagel, 2008, Got milk? The secret life of laticifers, Trends Plant Sci., 13, 631, 10.1016/j.tplants.2008.09.005 Konno, 2011, Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein, Phytochemistry, 72, 1510, 10.1016/j.phytochem.2011.02.016 Castelblanque, 2018, LOL2 and LOL5 loci control latex production by laticifer cells in Euphorbia lathyris, New Phytol., 219, 1467, 10.1111/nph.15253 Hua, 2017, Chemical profile and defensive function of the latex of Euphorbia peplus, Phytochemistry, 136, 56, 10.1016/j.phytochem.2016.12.021 Sytwala, 2015, Lysozyme- and chitinase activity in latex bearing plants of genus Euphorbia – a contribution to plant defense mechanism, Plant Physiol. Biochem., 95, 35, 10.1016/j.plaphy.2015.07.004 Kekwick, 2002, Latex and laticifers, 1 Castelblanque, 2016, Novel insights into the organization of laticifer cells: a cell comprising a unified whole system, Plant Physiol., 172, 1032 Prado, 2018, Laticifers and secretory ducts: similarities and differences, 103 Krstic, 2016, Metabolic changes in Euphorbia palusrtis latex after fungal infection, Phytochemistry, 131, 17, 10.1016/j.phytochem.2016.08.005 Rodrigues, 2012, Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L plants, J. Proteomics, 75, 3191, 10.1016/j.jprot.2012.03.021 Azarkan, 2004, Detection of three wound-induced proteins in papaya latex, Phytochemistry, 65, 525, 10.1016/j.phytochem.2003.12.006 Cho, 2010, Extended latex proteome analysis deciphers additional roles of the lettuce laticifer, Plant Biotechnol. Rep., 4, 311, 10.1007/s11816-010-0149-9 Dussourd, 2016, Chew and spit: tree-feeding notodontid caterpillars anoint girdles with saliva, Arthropod Plant Interact., 10, 143, 10.1007/s11829-016-9416-1 Pereira, 2010, Digestibility of defense proteins in latex of milkweeds by digestive proteases of Monarch butterflies, Danaus plexippus L.: a potential determinant of plant–herbivore interactions, Plant Sci., 179, 348, 10.1016/j.plantsci.2010.06.009 Ramos, 2013, New insights into the complex mixture of latex cysteine peptidases in Calotropis procera, Int. J. Biol. Macromol., 58, 211, 10.1016/j.ijbiomac.2013.04.001 Torres, 2012, Characterization of the proteolytic system present in Vasconcelle aquercifolia latex, Planta, 236, 1471, 10.1007/s00425-012-1701-3 Ekchaweng, 2017, The plant defense and pathogen counter defense mediated by Hevea brasiliensis serine protease HbSPA and Phytophthora palmivora extracellular protease inhibitor PpEPI10, PLoS One, 12, 10.1371/journal.pone.0175795 Baeyens-Volant, 2015, A novel form of ficin from Ficus carica latex: purification and characterization, Phytochemistry, 117, 154, 10.1016/j.phytochem.2015.05.019 Ramos, 2014, A phytopathogenic cysteine peptidase from latex of wild rubber vine Cryptostegia grandiflora, Protein J., 33, 199, 10.1007/s10930-014-9551-4 Freitas, 2010, Anti-oxidative and proteolytic activities and protein profile of laticifer cells of Cryptostegia grandiflora, Plumeria rubra and Euphorbia tirucalli, Braz. J. Plant Physiol., 22, 11, 10.1590/S1677-04202010000100002 Devaraj, 2008, An unusual thermostable aspartic protease from the latex of Ficus racemose (L.), Phytochemistry, 69, 647, 10.1016/j.phytochem.2007.09.003 Raskovic, 2014, Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex, J. Biosci. Bioeng., 118, 622, 10.1016/j.jbiosc.2014.05.020 Yadav, 2009, A kinetically stable plant subtilase with unique peptide mass fingerprints and dimerization properties, Biophys. Chem., 139, 13, 10.1016/j.bpc.2008.09.019 Rivera, 2012, Plant lipases: partial purification of Carica papaya lipase, Methods Mol. Biol., 861, 115, 10.1007/978-1-61779-600-5_7 Spanò, 2015, Chitinase III in Euphorbia characias latex: purification and characterization, Protein Expr. Purif., 116, 152, 10.1016/j.pep.2015.08.026 Van Parijs, 1991, Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex, Planta, 183, 258, 10.1007/BF00197797 Demarco, 2017, Histochemical analysis of plant secretory structures, Methods Mol. Biol., 1560, 313, 10.1007/978-1-4939-6788-9_24 Demarco, 2015, Micromorfología y histoquímica de los laticíferos de órganos vegetativos de especies de Asclepiadoideae (Apocynaceae), Acta Biol. Colomb., 20, 57, 10.15446/abc.v20n1.42375 Demarco, 2006, Laticíferos articulados anastomosados – novos registros para Apocynaceae, Braz. J. Bot., 29, 133, 10.1590/S0100-84042006000100012 De Bary, A. (1884) Comparative Anatomy of the Vegetative Organs of the Phanerogams and Ferns (English translation by F.O. Bower and D.H. Scott), Clarendon Press Mahlberg, 1993, Laticifers: an historical perspective, Bot. Rev., 59, 1, 10.1007/BF02856611 Demarco, 2013, Two laticifer systems in Sapium haematospermum — new records for Euphorbiaceae, Botany, 91, 545, 10.1139/cjb-2012-0277 Demarco, 2008, Laticíferos articulados anastomosados em espécies de Asclepiadeae (Asclepiadoideae, Apocynaceae) e suas implicações ecológicas, Braz. J. Bot., 31, 701, 10.1590/S0100-84042008000400015 Metcalfe, 1967, Distribution of latex in the plant kingdom, Econ. Bot., 21, 115, 10.1007/BF02897859 Marinho, 2018, Laticifer distribution in fig inflorescence and its potential role in the fig-fig wasp mutualism, Acta Oecol., 90, 160, 10.1016/j.actao.2017.10.005 Lopes, 2009, Articulated laticifers in the vegetative organs of Mandevilla atroviolacea (Apocynaceae, Apocynoideae), Botany, 87, 202, 10.1139/B08-126 Canaveze, 2016, The occurrence of intrusive growth associated with articulated laticifers in Tabernaemontana catharinensis A.DC., a new record for Apocynaceae, Int. J. Plant Sci., 177, 458, 10.1086/685446 Canaveze, 2019, Cytological differentiation and cell wall involvement in the growth mechanisms of articulated laticifers in Tabernaemontana catharinensis A.DC. (Apocynaceae), Protoplasma, 256, 131, 10.1007/s00709-018-1284-3 Gama, 2017, Laticifer development and its growth mode in Allamanda blanchetii A DC. (Apocynaceae), J. Torrey Bot. Soc., 144, 303, 10.3159/TORREY-D-16-00050 Marinho, 2019, Novel reports of laticifers in Moraceae and Urticaceae: revisiting synapomorphies, Plant Syst. Evol., 305, 13, 10.1007/s00606-018-1548-6 Agrawal, 2009, Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory, Annu. Rev. Ecol. Evol. Syst., 40, 311, 10.1146/annurev.ecolsys.110308.120307 Giordani, 1980, Dislocation du plasmalemme et libération de vésicules pariétales lors de la dégradation des parois terminales durant la différenciation des laticifères articulés, Biol. Cell, 38, 231 Wielkopolan, 2016, Three-way interaction among plants, bacteria, and coleopteran insects, Planta, 244, 313, 10.1007/s00425-016-2543-1 Magaña-Álvarez, 2016, Physical characteristics of the leaves and latex of papaya plants infected with the Papaya meleira virus, J. Mol. Sci., 17, 574, 10.3390/ijms17040574 Nawrot, 2017, Defense-related proteins from Chelidonium majus L: as important components of its Latex, Curr. Protein Pept. Sci., 18, 864, 10.2174/1389203718666170406124013 Dussourd, 2017, Behavioral sabotage of plant defenses by insect folivores, Annu. Rev. Entomol., 62, 15, 10.1146/annurev-ento-031616-035030 Rafter, 2017, Impact of consuming ‘toxic' monarch caterpillars on adult Chinese mantid mass gain and fecundity, Insects, 8, 23, 10.3390/insects8010023 Zalucki, 1999, Plant latex and first-instar monarch larval growth and survival on three north American milkweed species, J. Chem. Ecol., 25, 1827, 10.1023/A:1020929732223 Jeschke, 2017, How glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate metabolism, Front. Plant Sci., 8, 1995, 10.3389/fpls.2017.01995 Sethi, 2009, Enzyme induction as a possible mechanism for latex-mediated insect resistance in romaine lettuce, J. Chem. Ecol., 35, 190, 10.1007/s10886-009-9596-6 Ramos, 2007, Immunological and allergenic responses induced by latex fractions of Calotropis procera (Ait.) R.Br, J. Ethnopharmacol., 111, 115, 10.1016/j.jep.2006.10.034 Ramos, 2015, Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants, Planta, 241, 167, 10.1007/s00425-014-2174-3 Konno, 2004, Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex, Plant J., 37, 370, 10.1046/j.1365-313X.2003.01968.x Albuquerque, 2009, Vascular permeability, neutrophil migration and edematogenic effects induced by the latex of Cryptostegia grandiflora, Toxicon, 53, 15, 10.1016/j.toxicon.2008.10.009 El Badwi, 1998, Studies on laticiferous plants: toxic effects in goats of Calotropis procera latex given by different routes of administration, Dtsch. Tierarztl. Wochenschr., 105, 425 Lima, 2011, Clinical and pathological effects of Calotropis procera exposure in sheep and rats, Toxicon, 57, 183, 10.1016/j.toxicon.2010.11.007 Bezerra, 2017, Latex proteins from Calotropis procera: toxicity and immunological tolerance revisited, Chem. Biol. Interact., 274, 138, 10.1016/j.cbi.2017.07.007 Van der Hoorn, 2004, The plant proteolytic machinery and its role in defence, Curr. Opin. Plant Biol., 7, 400, 10.1016/j.pbi.2004.04.003 Schaller, 2018, From structure to function − a family portrait of plant subtilases, New Phytol., 218, 901, 10.1111/nph.14582 Ali, 2018, Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 212–213, 29, 10.1016/j.micres.2018.04.008 Van Loon, 2006, Significance of inducible defense-related proteins in infected plants, Annu. Rev. Phytopathol., 44, 135, 10.1146/annurev.phyto.44.070505.143425 Van der Hoorn, 2008, Plant proteases: from phenotypes to molecular mechanisms, Annu. Rev. Plant Biol., 59, 191, 10.1146/annurev.arplant.59.032607.092835 Freitas, 2016, First insights into the diversity and functional properties of chitinases of the latex of Calotropis procera, Plant Physiol. Biochem., 108, 361, 10.1016/j.plaphy.2016.07.028 Looze, 2009, Purification and characterization of a wound-inducible thaumatin-like protein from the latex of Carica papaya, Phytochemistry, 70, 970, 10.1016/j.phytochem.2009.05.005 Hou, 2018, The cloak, dagger, and shield: proteases in plant-pathogen interactions, Biochem. J., 475, 2491, 10.1042/BCJ20170781 Kitajima, 2016, Transcriptome and proteome analyses provide insight into laticifer's defense of Euphorbia tirucalli against pests, Plant Physiol. Biochem., 108, 434, 10.1016/j.plaphy.2016.08.008 Yan, 2015, Plant antifungal proteins and their applications in agriculture, Appl. Microbiol. Biotechnol., 99, 4961, 10.1007/s00253-015-6654-6 Hakim, 2017, Osmotin: a plant defense tool against biotic and abiotic stresses, Plant Physiol. Biochem., 123, 149, 10.1016/j.plaphy.2017.12.012 Freitas, 2011, Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense, Plant Physiol. Biochem., 49, 738, 10.1016/j.plaphy.2011.01.027 Freitas, 2015, New constitutive latex osmotin-like proteins lacking antifungal activity, Plant Physiol. Biochem., 96, 45, 10.1016/j.plaphy.2015.07.012 Freitas, 2016, Proteomic analysis and purification of an unusual germin-like protein with proteolytic activity in the latex of Thevetia peruviana, Planta, 243, 1115, 10.1007/s00425-016-2468-8 Davidson, 2009, Germins: a diverse protein family important for crop improvement, Plant Sci., 177, 499, 10.1016/j.plantsci.2009.08.012 Freitas, 2017, Identification and characterization of two germin-like proteins with oxalate oxidase activity from Calotropis procera latex, Int. J. Biol. Macromol., 105, 1051, 10.1016/j.ijbiomac.2017.07.133 Tang, 2016, The rubber tree genome reveals new insights into rubber production and species adaptation, Nat. Plants, 2, 16073, 10.1038/nplants.2016.73 Nawrot, 2016, Combination of transcriptomic and proteomic approaches helps to unravel the protein composition of Chelidonium majus L milky sap, Planta, 244, 1055, 10.1007/s00425-016-2566-7 Cruz, 2019, Structural and enzymatic characterization of Peruvianin-I, the first germin-like protein with proteolytic activity, Int. J. Biol. Macromol., 126, 1167, 10.1016/j.ijbiomac.2019.01.023 Volpicella, 2014, Overview of plant chitinases identified as food allergens, J. Agric. Food Chem., 62, 5734, 10.1021/jf5007962 Taira, 2005, Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength, Biosci. Biotechnol. Biochem., 69, 811, 10.1271/bbb.69.811 Kitajima, 2010, Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity, BMC Biochem., 11, 6, 10.1186/1471-2091-11-6 Konno, 2018, Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains, Phytochemistry, 147, 211, 10.1016/j.phytochem.2018.01.005 Souza, 2011, Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens, Planta, 234, 183, 10.1007/s00425-011-1392-1 Ramos, 2015, Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action, Phytochemistry, 119, 5, 10.1016/j.phytochem.2015.09.012 Gomes, 2018, Role of Synadenium grantii latex proteases in nematicidal activity on Meloidogyne incognita and Panagrellus redivivus, Braz. J. Biol., 10.1590/1519-6984.188129 Ramos, 2010, The defensive role of latex in plants: detrimental effects on insects, Arthropod-Plant Interact., 4, 57, 10.1007/s11829-010-9084-5