Ciliary neurotrophic factor: a survival and differentiation inducer in human retinal progenitors

In Vitro Cellular & Developmental Biology - Animal - Tập 46 - Trang 635-646 - 2010
Kamla Dutt1, Yang Cao1, Ifeoma Ezeonu1
1Department of Pathology, Morehouse School of Medicine, Atlanta, USA

Tóm tắt

Retinitis pigmentosa, age-related macular degeneration, and Parkinson’s disease remain major problems in the field of medicine. Some of the strategies being explored for treatment include replacement of damaged tissue by transplantation of healthy tissues or progenitor cells and delivery of neurotrophins to rescue degenerating tissue. One of the neurotrophins with promise is the ciliary neurotrophic factor (CNTF). In this study, we report the role played by CNTF in retinal cell differentiation and survival in retinal progenitors. We found that CNTF is a survival factor for multipotential human retinal cells and increased cell survival by 50%, over a 7-d period, under serum-free conditions, as determined by apoptotic assays (immunohistochemistry and flow cytometry). This effect is dose dependent with a maximum survival at a CNTF concentration of 20 ng/ml. We also report that CNTF might be a cell commitment factor, directing the differentiation mainly toward large multipolar cells with ganglionic and amacrine phenotype. These cells express tyrosine hydroxylase (amacrine cells) as well as, thy 1.1 and neuron-specific enolase (ganglionic cells). Additionally, there was also an increase in protein kinase C alpha, a protein expressed in rod and cone bipolars as well as cone photoreceptors and calbindin, a protein expressed in cone photoreceptors and horizontal cells. In our studies, CNTF doubled the number of cells with ganglionic phenotypes, and basic fibroblast growth factor doubled the number of cells with photoreceptor phenotype. Additionally, CNTF induced a subset of progenitors to undergo multiple rounds of cell division before acquiring the large multipolar ganglionic phenotype. Our conclusion is that CNTF could be an agent that has therapeutic potential and possibly induces differentiation of large multipolar ganglionic phenotype in a subset of progenitors.

Tài liệu tham khảo

Adler R.; Hatlee M. Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243: 391–393; 1989. doi:10.1126/science.2911751. Altshuler D.; Cepko C. A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114: 947–957; 1992. Bazan J. F. Neuropoietic cytokines in the hematopoietic fold. Neuron 7: 197–208; 1991. doi:10.1016/0896-6273(91)90258-2. Belecky-Adams T. L.; Scheurer D.; Adler R. Activin family members in the developing chick retina: expression patterns, protein distribution, and in vitro effects. Dev. Biol. 210: 107–123; 1999. doi:10.1006/dbio.1999.9268. Bhattacharya S.; Dooley C.; Soto F.; Madson J.; Das A. V.; Ahmad I. Involvement of Ath3 in CNTF-mediated differentiation of the late retinal progenitors. Mol. Cell. Neurosci. 27: 32–43; 2004. doi:10.1016/j.mcn.2004.05.004. Bok D.; Yasumura D.; Matthes M. T.; Ruiz A.; Duncan J. L.; Chappelow A. V.; Zolutukhin S.; Hauswirth W.; LaVail M. M. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp. Eye Res. 74: 719–735; 2002. doi:10.1006/exer.2002.1176. Cao W.; Li F.; Steinberg R. H.; LaVail M. M. Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP, and IGF-I in the rat retina. Exp. Eye Res. 72: 591–604; 2001. doi:10.1006/exer.2001.0990. Cayouette M.; Barres B. A.; Raff M. Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40: 897–904; 2003. doi:10.1016/S0896-6273(03)00756-6. Cayouette M.; Behn D.; Sendtner M.; Lachapelle P.; Gravel C. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J Neurosci 18: 9282–9293; 1998. Cayouette M.; Gravel C. Adenovirus-mediated gene transfer of ciliary neurotrophic factor can prevent photoreceptor degeneration in the retinal degeneration (rd) mouse. Hum. Gene Ther. 8: 423–430; 1997. doi:10.1089/hum.1997.8.4-423. Chong N. H.; Alexander R. A.; Waters L.; Barnett K. C.; Bird A. C.; Luthbert P. J. Repeated injections of a ciliary neurotrophic factor analogue leading to long-term photoreceptor survival in hereditary retinal degeneration. Invest. Ophthalmol. Vis. Sci. 40: 1298; 1999. Cui Q.; Lu Q.; So K. F.; Yip H. K. CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest. Ophthalmol. Vis. Sci. 40: 760–766; 1999. D’Cruz P. M.; Yasumura D.; Weir J.; Matthes M. T.; Abderrahim H.; LaVail M. M. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9: 645–651; 2000. doi:10.1093/hmg/9.4.645. DeChiara T. M.; Vejsada R.; Poueymirou W. T.; Acheson A.; Suri C.; Conover J. C.; Friedman B.; McClain J.; Pan L.; Stahl N.; Ip N. Y.; Kato A.; Yancopoulos G. D. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83: 313–322; 1995. doi:10.1016/0092-8674(95)90172-8. Dutt K.; Ezeonu I.; Scott M.; Semple E.; Srinivasan A. Proto-oncogene expression in cAMP and TPA-mediated neuronal differentiation in a human retinal cell line KGLDMSM. Curr. Eye Res. 15: 477–485; 1996. doi:10.3109/02713689609000759. Dutt K.; Scott M.; Wang M.; Semple E.; Sharma G. P.; Srinivasan A. Establishment of a human retinal cell line by transfection of SV40 T antigen gene with potential to undergo neuronal differentiation. DNA Cell Biol. 13: 909–921; 1994. Escandnon E.; Soppet D.; Rosenthal A.; Mendoza-Ramirez J. L.; Szonyi E.; Burton L. E.; Henderson C. E.; Parade L. F.; Nikolics K. Regulation of neurotrophin receptor expression during embryonic and postnatal development. J. Neurosci. 14: 2054–2068; 1994. Ezeonu I.; Wang M.; Kumar R.; Dutt K. Density-dependent differentiation in nontransformed human retinal progenitor cells in response to basic fibroblast growth factor- and transforming growth factor-alpha. DNA Cell Biol. 22: 607–620; 2003. doi:10.1089/104454903770238085. Ezzeddine Z. D.; Yang X.; DeChiara T.; Yancopoulos G.; Cepko C. L. Postmitotic cells fated to become rod photoreceptors can be specified by CNTF treatment of the retina. Development 124: 1055–1067; 1997. Faktorovich E. G.; Steinberg R. H.; Yasumura D.; Matthes M. T.; LaVail M. M. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci 12: 3554–3567; 1992. Fuhrmann S.; Heller H.; Rohrer H.; Hofmann D. A transient role for ciliary neurotrophic factor in chick photoreceptor development. J. Neurobiol. 37: 672–683; 1998. doi:10.1002/(SICI)1097-4695(199812)37:4<672::AID-NEU14>3.0.CO;2-1. Fuhrmann S.; Kirsch M.; Hofmann H. D. Ciliary neurotrophic factor promotes chick photoreceptor development in vitro. Development 121: 2695–2706; 1994. Heller S.; Finn T. P.; Huber J.; Nishi R.; Geissen M.; Puschel A. W.; Rohrer H. Analysts of function and expression of the chick GPA receptor (GPAR alpha) suggests multiple roles in neuronal development. Development 121: 2681–2693; 1995. Holt C. E.; Bertsch T. W.; Ellis H. M.; Harris W. A. Cellular determination in the xenopus retina is independent of lineage and birth date. Neuron 1: 15–26; 1988. doi:10.1016/0896-6273(88)90205-X. Huang S. P.; Lin P. K.; Liu J. H.; Khor C. N.; Lee Y. J. Intraocular gene transfer of ciliary neurotrophic factor rescues photoreceptor degeneration in RCS rats. J. Biomed. Sci. 11: 37–48; 2004. doi:10.1007/BF02256547. Hughes S. M.; Lillen L. E.; Raff M. C.; Rohrer H.; Sendtner M. Ciliary neurotrophic factor induces type-2 astrocyte differentiation in culture. Nature 335: 70–73; 1988. doi:10.1038/335070a0. Inoue M.; Nakayama C.; Noguchi H. Activating mechanism of CNTF and related cytokines. Mol. Neurobiol. 12: 195–209; 1996. doi:10.1007/BF02755588. Ip N. Y.; Li Y. P.; van de Stadt I.; Panayotatos N.; Alderson R. F.; Lindsay R. M. Ciliary neurotrophic factor enhances neuronal survival in embryonic rat Hippocampal cultures. J. Neurosci. 11: 3124–3134; 1991. Ip N. Y.; Yancopoulos G. D. The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Ann. Rev. Neurosci. 19: 491–515; 1996. doi:10.1146/annurev.ne.19.030196.002423. Ji J. Z.; Elyaman W.; Yip H. K.; Lee V. W.; Yick L. W.; Hugon J.; So K. F. CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats; the possible involvement of STAT3 pathway. Eur. J. Neurosci. 19: 265–272; 2004. doi:10.1111/j.0953-816X.2003.03107.x. Ju W. K.; Lee M. Y.; Hofmann H. D.; Kirsch M.; Oh S. J.; Chung J. W.; Chu M. H. Increased expression of ciliary neurotrophic factor receptor alpha mRNA in the ischemic rat retina. Neurosci. Lett. 283: 133–136; 2000. doi:10.1016/S0304-3940(00)00931-9. Kirsch M.; Fuhrmann S.; Wiese A.; Hofman H. D. CNTF exerts opposite effects on in vitro development of rat and chick photoreceptors. NeuroReport 7: 697–700; 1996. doi:10.1097/00001756-199602290-00004. Kirsch M.; Lee M. Y.; Meyer V.; Weise A.; Hofmann H. D. Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptors and in vitro effects on target cells. J. Neurochem. 68: 979–990; 1997. Kishmoto T.; Taga T.; Akira S. Cytokine signal transduction. Cell 76: 253–262; 1994. doi:10.1016/0092-8674(94)90333-6. LaVail M. M.; Unoki K.; Yasumura D.; Matthes M. T.; Yancopoulos G. D.; Steinberg R. H. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl Acad. Sci. USA 89: 11249–11253; 1992. doi:10.1073/pnas.89.23.11249. LaVail M. M.; Yasumura D.; Matthes M. T.; Lau-Villacorta C.; Unoki K.; Sung C. H.; Steinberg R. H. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthalmol. Vis. Sci. 39: 592–602; 1998. Lehwalder D.; Jeffrey P. L.; Unsicker K. Survival of purified embryonic chick retinal ganglion cells in the presence of neurotrophic factors. J. Neurosci. Res. 24: 329–337; 1989. doi:10.1002/jnr.490240225. Lewin G. R.; Barde Y. A. Physiology of the neurotrophins. Annu. Rev. Neurosci. 19: 289–317; 1996. doi:10.1146/annurev.ne.19.030196.001445. Liang F. Q.; Aleman T. S.; Dejneka N. S.; Dudus L.; Fisher K. J.; Maguire A. M.; Jacobson S. G.; Bennett J. Long-term protection of retinal structure but not function using RAAV CNTF in animal models of retinitis Pigmentosa. Mol. Ther. 4: 461–472; 2001. doi:10.1006/mthe.2001.0473. Lillien L. Neurol progenitors and stem cells: mechanisms of progenitor heterogeneity. Curr Opin Neurolbiol 8: 37–44; 1998. doi:10.1016/S0959-4388(98)80006-8. Manthorpe M.; Louis J. C.; Hagg T.; Varon S. Ciliary neurotrophic factor. In: Loughlin S. E.; Fallon J. H. (eds) Neurotrophins factors. Academic, New York, pp 443–473; 1993. Meyer-Franke A.; Kaplan M. R.; Pfrieger F. W.; Barner B. A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15: 805–819; 1995. doi:10.1016/0896-6273(95)90172-8. Pennica D.; Shaw K. J.; Swanson T. A.; Moore M. W.; Shelton D. L.; Zioncheck K. A.; Rosenthal A.; Taga T.; Paoni N. F.; Wood W. I. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp 130 signaling complex. J. Biol. Chem. 270: 10915–10922; 1995. doi:10.1074/jbc.270.18.10915. Reh T. A. Cellular interactions determine neuronal phenotypes in rodent retinal cultures. J. Neurobiol. 23: 1067–1083; 1992. doi:10.1002/neu.480230811. Rhee K. D.; Goureau O.; Chen S.; Yang X. J. Cytokine-induced activation of signal transducer and activator of transcription in photoreceptor precursors regulates rod differentiation in the developing mouse retina. J. Neurosco. 24: 9779–9788; 2004. doi:10.1523/JNEUROSCI.1785-04.2004. Sarup V.; Patil K.; Sharma S. C. Ciliary neurotrophic factor and its receptors are differentially expressed in the optic nerve transected adult rat retina. Brain Res. 1013: 152–158; 2004. doi:10.1016/j.brainres.2004.03.030. Segal R. A.; Greenberg M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19: 463–489; 1996. Sendtner M.; Carroll P.; Holtmann B.; Hughes R. A.; Thoenen H. Ciliary neurotrophic factor. J. Neurobiol. 25: 1436–1453; 1994. doi:10.1002/neu.480251110. Shimzaki T.; Shingo T.; Weiss S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp 130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci. 21: 7642–7653; 2001. Sieving P. A.; Caruso R. C.; Tao W.; Coleman H. R.; Thompson D. J.; Fullmer K. R.; Bush R. A. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl Acad. Sci. USA 103: 3896–3901; 2006. doi:10.1073/pnas.0600236103. Stahl N.; Yancopoulos G. D. The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 25: 1454–1466; 1994. doi:10.1002/neu.480251111. Steinberg R. H. Survival factors in retinal degenerations. Curr. Opin. Neurobiol. 4: 515–524; 1994. doi:10.1016/0959-4388(94)90052-3. Tao W.; Wen R.; Goddard B.; Sherman S. D.; O’Rourke P. J.; Stabila P. F.; Bell W. J.; Dean B. J.; Kauper K. A.; Budz V. A.; Tsiaras W. G.; Acland G. M.; Pearce-Kelling S.; Laties A. M.; Aguirre G. D. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis Pigmentosa. Invest. Ophthalmol. Vis. Sci. 43: 3292–3298; 2002. Turner D. L.; Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136; 1987. doi:10.1038/328131a0. Unoki K.; Ohba N.; Arimura H.; Murmatsu H.; Muramatsu T. Rescue of photoreceptors from the damaging effects of constant light by midkine, a retinoic acid-responsive gene product. Invest. Ophthalmol. Vis. Sci. 35: 4063–4068; 1994. Valter K.; Bisti S.; Stone J. Location of CNTFRalpha on outer segments: evidence of the site of action of CNTF in rat retina. Brain Res. 985: 169–175; 2003. doi:10.1016/S0006-8993(03)03130-5. Wahlin K. J.; Campochiaro P. A.; Zack D. J.; Adler R. Neurotrophic factors cause activation of intracellular signaling pathways in Muller cells and other cells of the inner retina, but not photoreceptors. Invest. Ophthalmol. Vis. Sci. 41: 927–936; 2000. Watanabe T.; Raff M. C. Diffusible rod-promoting signals in the developing rat retina. Development 114: 899–906; 1992. Wen R.; Cheng T.; Song Y.; Matthes M. T.; Yasamura D.; LaVail M. M.; Steinberg R. H. Continuous exposure to bright light upregulates bFGF and CNTF expression in the rat. Curr. Eye Res. 17: 494–500; 1998. doi:10.1076/ceyr.17.5.494.5186. Wetts R.; Fraser S. E. Multipotent precursors can give rise to all major cell types of the frog retina. Science 239: 1142–1145; 1988. doi:10.1126/science.2449732. Xie H. Q.; Adler R. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Invest. Ophthalmol. Vis. Sci. 41: 4317–4323; 2000. Yano H.; Chao M. V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv. 74: 253–260; 2000. doi:10.1016/S0031-6865(99)00036-9. Zahir T.; Klassen H.; Young M. J. Effects of ciliary neurotrophic factor on differentiation of late retinal progenitor cells. Stem Cells 23: 424–432; 2005. doi:10.1634/stemcells.2004-0199.