Neutrophil Serine Proteinases Cleave Bacterial Flagellin, Abrogating Its Host Response-Inducing Activity

Journal of Immunology - Tập 172 Số 1 - Trang 509-515 - 2004
Yolanda S. López-Boado1,2, Marcia Espinola3, Scott M. Bahr3, Abderrazzaq Belaaouaj4,3
1*Department of Internal Medicine (Molecular Medicine), Wake Forest University School of Medicine, Winston-Salem, NC 27157; and Departments of
2Pediatrics
3Medicine, and
4Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110

Tóm tắt

Abstract

After bacterial infection, neutrophils dominate the cellular infiltrate. Their main function is assumed to be killing invading pathogens and resolving the inflammation they cause. Activated neutrophils are also known to release a variety of molecules, including the neutrophil serine proteinases, extracellularly. The release of these proteinases during inflammation creates a proteolytic environment where degradation of different molecules modulates the inflammatory response. Flagellin, the structural component of flagella on many bacterial species, is a virulence factor with a strong proinflammatory activity on epithelial cells and other cell types. In this study we show that both human and mouse neutrophil serine proteinases cleave flagellin from Pseudomonas aeruginosa and other bacterial species. More important, cleavage of P. aeruginosa flagellin by the neutrophil serine proteinases neutrophil elastase and cathepsin G resulted in loss of the biological activity of this virulence factor, as evidenced by the lack of innate host defense gene expression in human epithelial cells. The finding that flagellin is susceptible to cleavage by neutrophil serine proteinases suggests a novel role for these enzymes in the inflammatory response to infection. Not only can these enzymes kill bacteria, but they also degrade their virulence factors to halt the inflammatory response they trigger.

Từ khóa


Tài liệu tham khảo

Belaaouaj, A.. 2002. Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect. 4:1259.

Bode, W., E. Meyer, Jr, J. C. Powers. 1989. Human leukocyte and porcine pancreatic elastase: x-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28:1951.

Belaaouaj, A., R. McCarthy, M. Baumann, Z. Gao, T. J. Ley, S. N. Abraham, S. D. Shapiro. 1998. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat. Med. 4:615.

MacIvor, D. M., S. D. Shapiro, C. T. N. Pham, A. Belaaouaj, S. Abraham, T. J. Ley. 1999. Normal neutrophil function in cathepsin G-deficient mice. Blood 94:4282.

Belaaouaj, A., K. S. Kim, S. D. Shapiro. 2000. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 289:1185.

Lee, W. L., G. P. Downey. 2001. Leukocyte elastase: physiological functions and role in acute lung injury. Am. J. Respir. Crit. Care Med. 164:896.

Owen, C. A., M. A. Campbell, S. S. Boukedes, E. J. Campbell. 1997. Cytokines regulate membrane-bound leukocyte elastase on neutrophils: a novel mechanism for effector activity. Am. J. Physiol. 272:L385.

Cai, T.-Q., S. D. Wright. 1996. Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1, αMβ2) and modulates polymorphonuclear leukocyte adhesion. J. Exp. Med. 184:1213.

Champagne, B., P. Tremblay, A. Cantin, Y. St. Pierre. 1998. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol. 161:6398.

Bedard, M., C. D. McCLure, N. L. Schiller, C. Francoeur, A. Cantin, M. Denis. 1993. Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 9:455.

Macnab, R. M.. 1999. The bacterial flagellum: reversible rotary propeller and type III export apparatus. J. Bacteriol. 181:7149.

Feldman, M., R. Bryan, S. Rajan, L. Scheffler, S. Brunnert, H. Tang, A. Prince. 1998. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect. Immun. 66:43.

Mizel, S. B., J. A. Snipes. 2002. Gram-negative flagellin-induced self-tolerance is associated with a block in interleukin-1 receptor-associated kinase release from Toll-like receptor 5. J. Biol. Chem. 277:22414.

Zeng, H., A. Q. Carlson, Y. Guo, Y. Yu, L. S. Collier-Hyams, J. L. Madara, A. T. Gewirtz, A. Neish. S.. 2003. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171:3668.

Steiner, T. S., J. P. Nataro, C. E. Poteet-Smith, J. A. Smith, R. L. Guerrant. 2000. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Invest. 105:1769.

Gewirtz, A. T., T. A. Navas, S. Lyons, P. J. Godowski, J. L. Madara. 2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:1882.

Gewirtz, A. T., P. O. Simon, C. K. Schmitt, L. J. Taylor, C. H. Hagedorn, A. D. O’Brien, A. S. Neish, J. L. Madara. 2001. Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107:99.

DiMango, E., H. J. Zar, R. Bryan, A. Prince. 1995. Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J. Clin. Invest. 96:2204.

Eaves-Pyles, T., K. Murthy, L. Liaudet, L. Virag, G. Ross, F. Garcia-Soriano, C. Szaba, A. L. Salzman. 2001. Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 166:1248.

Reed, K. A., M. E. Hobert, C. E. Kolenda, K. A. Sands, M. Rathman, M. O’Connor, S. Lyons, A. T. Gewirtz, P. J. Sansonetti, J. L. Madara. 2002. The Salmonella typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells. J. Biol. Chem. 277:13346.

Lopez-Boado, Y. S., C. L. Wilson, W. C. Parks. 2001. Regulation of matrilysin expression in airway epithelial cells by Pseudomonas aeruginosa flagellin. J. Biol. Chem. 276:41417.

Ogushi, K., A. Wada, T. Niidome, N. Mori, K. Oishi, T. Nagatake, A. Takahashi, H. Asakura, S. Makino, H. Hojo, et al 2001. Salmonella enteritidis FliC (flagella filament protein) induces human β-defensin-2 mRNA production by Caco-2 cells. J. Biol. Chem. 276:30521.

Ciacci-Woolwine, F., L. S. Kucera, S. H. Richardson, N. P. Iyer, S. B. Mizel. 1997. Salmonellae activate tumor necrosis factor α production in a human promonocytic cell line via a released polypeptide. Infect. Immun. 65:4624.

Ciacci-Woolwine, F., I. C. Blomfield, S. H. Richardson, S. B. Mizel. 1998. Salmonella flagellin induces tumor necrosis factor α in a human promonocytic cell line. Infect. Immun. 66:1127.

Sierro, F., B. Dubois, A. Coste, D. Kaiserlian, J. P. Kraehenbuhl, J. C. Sirard. 2001. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. USA 98:13722.

McSorley, S. J., B. D. Ehst, Y. Yu, A. T. Gewirtz. 2002. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J. Immunol. 169:3914.

Haslett, C., L. A. Guthrie, M. M. Kopaniak, R. B. Johnston, P. M. Henson. 1985. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am. J. Pathol. 119:101.

Schultz, M. J., A. W. Rijneveld, S. Florquin, P. Speelman, S. J. Van Deventer, T. Van Der Poll. 2001. Impairment of host defence by exotoxin A in Pseudomonas aeruginosa pneumonia in mice. J. Med. Microbiol. 50:822.

Szarka, R. J., N. Wang, L. Gordon, P. N. Nation, R. H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J. Immunol. Methods 202:49.

Wilson, C. L., A. J. Ouellette, D. P. Satchell, T. Ayabe, Y. S. López-Boado, J. L. Stratman, S. J. Hultgren, L. M. Matrisian, W. C. Parks. 1999. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113.

Samatey, F. A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto, K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410:331.

Vonderviszt, F., S. Aizawa, K. Namba. 1991. Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221:1461.

O’Neil, D. A., E. M. Porter, D. Elewaut, G. M. Anderson, L. Eckmann, T. Ganz, M. F. Kagnoff. 1999. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163:6718.

Bode, W., E. Meyer, Jr, J. C. Powers. 1989. Human leukocyte and porcine pancreatic elastase: x-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28:1951.

Brimer, C. D., T. C. Montie. 1998. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J. Bacteriol. 180:3209.

Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Y i, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099.

Mizel, S. B., A. P. West, R. R. Hantgan. 2003. Identification of a sequence in human Toll-like receptor 5 required for the binding of Gram-negative flagellin. J. Biol. Chem. 278:23624.

Joys, T. M.. 1988. The flagellar filament protein. Can. J. Microbiol. 34:452.

McDermott, P. F., F. Ciacci-Woolwine, J. A. Snipes, S. B. Mizel. 2000. High-affinity interaction between Gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect. Immun. 68:5525.

Eaves-Pyles, T. D., H. R. Wong, K. Odoms, R. B. Pyles. 2001. Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J. Immunol. 167:7009.

Donnelly, M. A., T. S. Steiner. 2002. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of Toll-like receptor 5. J. Biol. Chem. 277:40456.

Weinrauch, Y., D. Drujan, S. D. Shapiro, J. Weiss, A. Zychlinsky. 2002. Neutrophil elastase targets virulence factors of enterobacteria. Nature 417:91.

Lagace, J., L. Peloquin, P. Kermani, T. C. Montie. 1995. IgG subclass responses to Pseudomonas aeruginosa a- and b-type flagellins in patients with cystic fibrosis: a prospective study. J. Med. Microbiol. 43:270.

Delacourt, C., S. Herigault, C. Delclaux, A. Poncin, M. Levame, A. Harf, F. Saudubray, C. Lafuma. 2002. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am. J. Respir. Cell Mol. Biol. 26:290.

Komoriya, K., N. Shibano, T. Higano, N. Azuma, S. Yamaguchi, S. I. Aizawa. 1999. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34:767.

Young, G. M., D. H. Schmile, V. L. Miller. 1999. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl. Acad. Sci. USA 96:6456.

Boutten, A., M. S. Dehoux, N. Seta, J. Ostinelli, P. Venembre, B. Crestani, M. C. Dombret, G. Durand, M. Aubier. 1996. Compartmentalized IL-8 and elastase release within the human lung in unilateral pneumonia. Am. J. Respir. Crit. Care Med. 153:336.

Liou, T. G., E. J. Campbell. 1995. Nonisotropic enzyme-inhibitor interactions: a novel nonoxidative mechanism for quantum proteolysis by human neutrophils. Biochemistry 34:16171.

Travis, J., A. Dubin, J. Potempa, W. Watorek, A. Kurdowska. 1991. Neutrophil proteinases: caution signs in designing inhibitors against enzymes with possible multiple functions. Ann. NY Acad. Sci. 624:81.