Condensate droplet size distribution on lubricant-infused surfaces

International Journal of Heat and Mass Transfer - Tập 109 - Trang 187-199 - 2017
Patricia B. Weisensee1, Yunbo Wang1, Hongliang Qian1, Daniel Schultz1, William P. King1, Nenad Miljkovic1,2
1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, USA
2International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Tài liệu tham khảo

Nørgaard, 2010, Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles, Front. Zool., 7, 23, 10.1186/1742-9994-7-23 Malik, 2015, Dew harvesting efficiency of four species of cacti, Bioinspir. Biomim., 10, 036005, 10.1088/1748-3190/10/3/036005 Paxson, 2014, Stable dropwise condensation for enhancing heat transfer via the initiated Chemical Vapor Deposition (iCVD) of grafted polymer films, Adv. Mater., 26, 418, 10.1002/adma.201303065 Yang, 2015, A novel flat polymer heat pipe with thermal via for cooling electronic devices, Energy Convers. Manage., 100, 37, 10.1016/j.enconman.2015.04.063 Rao, 2013, Experimental investigation on thermal management of electric vehicle battery with heat pipe, Energy Convers. Manage., 65, 92, 10.1016/j.enconman.2012.08.014 Nada, 2015, Experimental study for hybrid humidification–dehumidification water desalination and air conditioning system, Desalination, 363, 112, 10.1016/j.desal.2015.01.032 Sathyamurthy, 2015, Experimental analysis of a portable solar still with evaporation and condensation chambers, Desalination, 367, 180, 10.1016/j.desal.2015.04.012 Seo, 2016, The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces, Sci. Rep., 6, 24276, 10.1038/srep24276 Schmidt, 1930, Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform, Tech. Mech. Thermodyn., 1, 53 Attinger, 2014, Surface Engineering for Phase Change Heat Transfer: A Review, Cond.-Mat. Rose, 2002, Dropwise condensation theory and experiment: a review, Proc. Inst. Mech. Eng. Part J. Power Energy, 216, 115, 10.1243/09576500260049034 Miljkovic, 2013, Condensation heat transfer on superhydrophobic surfaces, MRS Bull., 38, 397, 10.1557/mrs.2013.103 Ölçeroğlu, 2014, Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces, Langmuir, 30, 7556, 10.1021/la501063j Enright, 2014, Dropwise condensation on micro- and nanostructured surfaces, Nanoscale Microscale Thermophys. Eng., 18, 223, 10.1080/15567265.2013.862889 Rykaczewski, 2014, Dropwise condensation of low surface tension fluids on omniphobic surfaces, Sci. Rep., 4, 10.1038/srep04158 Park, 2016, Condensation on slippery asymmetric bumps, Nature, 531, 78, 10.1038/nature16956 Graham, 1973, Drop size distributions and heat transfer in dropwise condensation, Int. J. Heat Mass Transfer, 16, 337, 10.1016/0017-9310(73)90062-8 Enright, 2012, Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale, Langmuir, 28, 14424, 10.1021/la302599n Koishi, 2009, Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface, Proc. Natl. Acad. Sci., 106, 8435, 10.1073/pnas.0902027106 Liu, 2010, Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state, Langmuir, 26, 14835, 10.1021/la101845t Feng, 2012, Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others, ACS Appl. Mater. Interfaces, 4, 6618, 10.1021/am301767k Jo, 2015, Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation, Sci. Rep., 5, 9901, 10.1038/srep09901 Enright, 2014, How coalescing droplets jump, ACS Nano, 8, 10352, 10.1021/nn503643m Enright, 2013, Condensation on superhydrophobic copper oxide nanostructures, J. Heat Transfer, 135, 091304, 10.1115/1.4024424 Boreyko, 2009, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.184501 Liu, 2014, Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, J. Fluid Mech., 752, 39, 10.1017/jfm.2014.320 Miljkovic, 2012, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces, Nano Lett., 13, 179, 10.1021/nl303835d Anand, 2012, Enhanced condensation on lubricant-impregnated nanotextured surfaces, ACS Nano, 6, 10122, 10.1021/nn303867y Xiao, 2013, Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer, Sci. Rep., 3, 10.1038/srep01988 Kim, 2016, Condensation behaviors and resulting heat transfer performance of nano-engineered copper surfaces, Int. J. Heat Mass Transfer, 93, 286, 10.1016/j.ijheatmasstransfer.2015.09.079 Lafuma, 2011, Slippery pre-suffused surfaces, EPL Europhys. Lett., 96, 56001, 10.1209/0295-5075/96/56001 Daniel, 2013, Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures, Appl. Phys. Lett., 102, 231603, 10.1063/1.4810907 Smith, 2013, Droplet mobility on lubricant-impregnated surfaces, Soft Matter., 9, 1772, 10.1039/C2SM27032C Wong, 2011, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477, 443, 10.1038/nature10447 Rose, 1973, Dropwise condensation—the distribution of drop sizes, Int. J. Heat Mass Transfer, 16, 411, 10.1016/0017-9310(73)90068-9 Tanaka, 1975, Measurements of drop-size distributions during transient dropwise condensation, J. Heat Transfer, 97, 341, 10.1115/1.3450376 Kajiya, 2016, 3D imaging of water-drop condensation on hydrophobic and hydrophilic lubricant-impregnated surfaces, Sci. Rep., 6, 23687, 10.1038/srep23687 Schellenberger, 2015, Direct observation of drops on slippery lubricant-infused surfaces, Soft Matter., 11, 7617, 10.1039/C5SM01809A Khandekar, 2014 Kashchiev, 2000 Kim, 2011, Dropwise condensation modeling suitable for superhydrophobic surfaces, J. Heat Transfer, 133, 10.1115/1.4003742 Watanabe, 2014, Time-series characteristics and geometric structures of drop-size distribution density in dropwise condensation, Int. J. Heat Mass Transfer, 76, 467, 10.1016/j.ijheatmasstransfer.2014.04.041 Rose, 1976, Further aspects of dropwise condensation theory, Int. J. Heat Mass Transfer, 19, 1363, 10.1016/0017-9310(76)90064-8 Miljkovic, 2013, Modeling and optimization of superhydrophobic condensation, J. Heat Transfer, 135, 10.1115/1.4024597 Liu, 2015, Dropwise condensation theory revisited. Part II. Droplet nucleation density and condensation heat flux, Int. J. Heat Mass Transfer, 83, 842, 10.1016/j.ijheatmasstransfer.2014.11.008 Tanasawa, 1991, Advances in condensation heat transfer, 55, 10.1016/S0065-2717(08)70334-4 Schrage, 1953 Rose, 2000, Accurate approximate equations for intensive sub-sonic evaporation, Int. J. Heat Mass Transfer, 43, 3869, 10.1016/S0017-9310(00)00018-1 Lu, 2015, Modeling of evaporation from nanopores with nonequilibrium and nonlocal effects, Langmuir, 31, 9817, 10.1021/acs.langmuir.5b01700 Labuntsov, 1979, Analysis of intensive evaporation and condensation, Int. J. Heat Mass Transfer, 22, 989, 10.1016/0017-9310(79)90172-8 Barrett, 1992, Kinetic evaporation and condensation rates and their coefficients, J. Colloid Interface Sci., 150, 352, 10.1016/0021-9797(92)90205-Z Zheng, 2002, Effect of curvature, contact angle, and interfacial subcooling on contact line spreading in a microdrop in dropwise condensation, Langmuir, 18, 5170, 10.1021/la020040b Carey, 1992 Liu, 2015, Dropwise condensation theory revisited: Part I. Droplet nucleation radius, Int. J. Heat Mass Transfer, 83, 833, 10.1016/j.ijheatmasstransfer.2014.11.009 Chavan, 2016, Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces, Langmuir, 32, 7774, 10.1021/acs.langmuir.6b01903 Yang, 2012, A simple way to fabricate an aluminum sheet with superhydrophobic and self-cleaning properties, Chin. Phys. B, 21, 126801, 10.1088/1674-1056/21/12/126801 Boreyko, 2014, Air-stable droplet interface bilayers on oil-infused surfaces, Proc. Natl. Acad. Sci., 111, 7588, 10.1073/pnas.1400381111 Wexler, 2015, Shear-driven failure of liquid-infused surfaces, Phys. Rev. Lett., 114, 10.1103/PhysRevLett.114.168301 Hiroaki, 1984, A microscopic study of dropwise condensation, Int. J. Heat Mass Transfer, 27, 327, 10.1016/0017-9310(84)90280-1 Yamali, 2002, A theory of dropwise condensation at large subcooling including the effect of the sweeping, Heat Mass Transfer, 38, 191, 10.1007/s002310100272 E.J. Le Fevre, J.W. Rose, A theory of heat transfer by dropwise condensation, in: Proc. 3rd Int. Heat Transf. Conf. Chic., 1966, pp. 362–375 (n.d.). H. Tanaka, S. Hatamiya, Drop size distributions and heat transfer in dropwise condensation-condensation coefficient of water at low pressure, in: Proc. 8th Int. Heat Transf. Conf., 1986, pp. 1671–1676. Nusselt, 1916, Die Oberflächenkondensation des Wasserdampfes, Z. Ver. Deut Ing., 60, 541 Altenpohl, 1962, Use of boehmite films for corrosion protection of aluminum, Corrosion, 18, 143t, 10.5006/0010-9312-18.4.143 Kim, 2013, Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates, Nano Lett., 13, 1793, 10.1021/nl4003969