GABA released from cultured cortical neurons influences the modulation of t-[35S]butylbicyclophosphorothionate binding at the GABAA receptor

European Journal of Pharmacology - Tập 600 - Trang 26-31 - 2008
Daniel A. García1,2, Iolanda Vendrell1,3, Mireia Galofré1,3, Cristina Suñol1,3
1Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Rosselló 161, E-08036 Barcelona, Spain
2Department of Chemistry, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, Córdoba (5016), Argentina
3CIBER Epidemiología y Salud Pública (CIBERESP), Spain

Tài liệu tham khảo

Babot, 2005, Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels, Eur. J. Neurosci., 21, 103, 10.1111/j.1460-9568.2004.03848.x Bali, 2004, Defining the propofol binding site location on the GABAA receptor, Mol. Pharmacol., 65, 68, 10.1124/mol.65.1.68 Burt, 2004, Essential oils: their antibacterial properties and potential applications in foods — a review, Int. J. Food Microbiol., 94, 223, 10.1016/j.ijfoodmicro.2004.03.022 Clausen, 2006, A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS, Neurochem. Int., 48, 637, 10.1016/j.neuint.2005.12.031 Davies, 1998, Effects of propofol and pentobarbital on ligand binding to GABAA receptor suggest a similar mechanism of action, Can. J. Physiol. Pharm., 76, 46, 10.1139/y97-184 Frandsen, 1990, Development of excitatory amino acid induced cytotoxicity in cultured neurons, Int. J. Dev. Neurosci., 8, 209, 10.1016/0736-5748(90)90013-R García, 2006, Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons, Neuropharmacology, 50, 25, 10.1016/j.neuropharm.2005.07.009 Gether, 2006, Neurotransmitter transporters: molecular function of important drug targets, Trends Pharmacol. Sci., 27, 375, 10.1016/j.tips.2006.05.003 Ghiani, 1996, Biochemical evaluations of the effects of loreclezole and propofol on the GABAA receptor in rat brain, Biochem. Pharmacol., 51, 1527, 10.1016/0006-2952(96)00094-9 Glykys, 2007, Activation of GABAA receptors: views from outside the synaptic cleft, Neuron, 56, 763, 10.1016/j.neuron.2007.11.002 Gomes-Carneiro, 1998, Mutagenicity testing (+/−)-camphor, 1,8-cineole, citral, citronellal, (−)-menthol and terpineol with the Salmonella/microsome assay, Mutat. Res., 416, 129, 10.1016/S1383-5718(98)00077-1 Haeseler, 2002, Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol, Eur. J. Anaesthesiol., 19, 571, 10.1097/00003643-200208000-00005 Hawkinson, 1998, Substituted 3β-phenylethynyl derivatives of 3α-hydroxy-5α-pregnan-20-one: remarkably potent neuroactive steroid modulators of γ-aminobutyric acid A receptors, J. Pharmacol. Exp. Ther., 287, 198 Huang, 1996, Mercury chloride modulation of the GABAA receptor–channel complex in rat dorsal root ganglion neurons, Toxicol. Appl. Pharmacol., 140, 508, 10.1006/taap.1996.0247 Im, 1994, Effects of GABA and various allosteric ligands on TBPS binding to cloned rat GABAA receptor subtypes, Br. J. Pharmacol., 112, 1025, 10.1111/j.1476-5381.1994.tb13185.x Kalueff, 2007, Mapping convulsants' binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites, Neurochem. Int., 50, 61, 10.1016/j.neuint.2006.07.004 Krasowsky, 2002, 4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABAA receptor, J. Med. Chem., 45, 3210, 10.1021/jm010461a Lee, 2008, Thymol and related alkyl phenols activate the hTRPA1 channel, Brit. J. Pharmacol., 153, 1739, 10.1038/bjp.2008.85 Li, 2002, Is Na+ required for the binding of dopamine, amphetamine, tyramine, and octopamine to the human dopamine transporter?, Naunyn Schmiedebergs Arch. Pharmacol., 365, 303, 10.1007/s00210-001-0526-6 MacDonald, 1994, GABAA receptor channels, Annu. Rev. Neurosci., 17, 569, 10.1146/annurev.ne.17.030194.003033 MacPherson, 2001, Pharmaceutics for the anaesthetist, Anaesthesia, 56, 965, 10.1046/j.1365-2044.2001.02216.x McKernan, 1996, Which GABA,-receptor subtypes really occur in the brain?, Trends Neurosci., 19, 139, 10.1016/S0166-2236(96)80023-3 Mohammadi, 2001, Structural requirements of phenol derivatives for direct activation of chloride currents via GABAA receptors, Eur. J. Pharmacol., 421, 85, 10.1016/S0014-2999(01)01033-0 Mortensen, 2003, Pharmacology of GABAA receptors exhibiting different levels of spontaneous activity, Eur. J. Pharm., 476, 17, 10.1016/S0014-2999(03)02125-3 Pomés, 1993, Inhibition of t-[35S]butylbicyclophosphorothionate binding by convulsant agents in primary cultures of cerebellar neurons, Dev. Brain Res., 73, 85, 10.1016/0165-3806(93)90049-G Priestley, 2003, Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster, Br. J. Pharmacol., 14, 1363, 10.1038/sj.bjp.0705542 Risso, 1996, Sodium-dependent GABA-induced currents in GATI-transfected HeLa cells, J. Physiol., 490, 691, 10.1113/jphysiol.1996.sp021178 Sánchez, 2004, Surface activity of thymol: implications for an eventual pharmacological activity, Colloids Surf. B, 34, 77, 10.1016/j.colsurfb.2003.11.007 Shapiro, 1995, The action of thymol on oral bacteria, Oral Microbiol. Immunol., 10, 241, 10.1111/j.1399-302X.1995.tb00149.x Spence, 1985, Acute effects of lead at central synapses in vitro, Brain Res., 333, 103, 10.1016/0006-8993(85)90129-5 Squires, 2000, Additivities of compounds that increase the numbers of high affinity [3H]muscimol binding sites by different amounts define more than 9 GABAA receptor complexes in rat forebrain: implications for schizophrenia and clozapine research, Neurochem. Res., 25, 1587, 10.1023/A:1026666419725 Squires, 1983, [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites, Mol. Pharmacol., 23, 326 Suñol, 2006, Activity of B-nor analogues of neurosteroids on GABAA receptor in primary neuronal cultures, J. Med. Chem., 49, 3225, 10.1021/jm060002f Suñol, 2008, Studies with neuronal cells: from basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity, Toxicol. In Vitro, 22, 1350, 10.1016/j.tiv.2008.03.009 Supavilai, 1984, [35S]-t-butylbicyclophosphorothionate binding sites are constituents of the gamma-aminobutyric acid benzodiazepine receptor complex, J. Neurosci., 4, 1193, 10.1523/JNEUROSCI.04-05-01193.1984 Uusi-Oukari, 2004, Brain regional heterogeneity of pH effects on GABAA receptor-associated [35S]TBPS binding, Neurochem. Res., 29, 771, 10.1023/B:NERE.0000018849.54169.c4 Vale, 1997, Allosteric interactions between γ-aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by γ- and δ-hexachlorocyclohexanes, Eur. J. Pharmacol., 319, 343, 10.1016/S0014-2999(96)00866-7 Vale, 1999, Effects of the conformationally restricted GABA analogues, cis- and trans-4-aminocrotonic acid, on GABA neurotransmission in primary neuronal cultures, J. Neurosci. Res., 57, 95, 10.1002/(SICI)1097-4547(19990701)57:1<95::AID-JNR10>3.0.CO;2-N Vale, 2003, The organochlorine pesticides γ-hexachlorocyclohexane (lindane), α-endosulfan and dieldrin differentially interact with GABAA and glycine-gated chloride channels in primary cultures of cerebellar granule cells, Neurosci., 37, 397, 10.1016/S0306-4522(02)00875-8 Whiting, 2003, GABAA receptor subtypes in the brain: a paradigm for CNS drug discovery?, Drug Discov. Today, 8, 445, 10.1016/S1359-6446(03)02703-X Wooltorton, 1997, Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors, Eur. J. Neurosci., 9, 2225, 10.1111/j.1460-9568.1997.tb01641.x Zeng, 2005, Neurosteroid analogues. 10. The effect of methyl group substitution at the C-6 and C-7 positions on the GABA modulatory and anesthetic actions of (3α,5α)- and (3α,5ββ)-3-hydroxypregnan-20-one, J. Med. Chem., 48, 3051, 10.1021/jm049027+