One‐dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints

American Geophysical Union (AGU) - Tập 110 Số B1 - 2005
Fabio Cammarano1,2, Arwen Deuss3, Saskia Goes4, Domenico Giardini4
1Institute of Geophysics, Eidgenössische Technische Hochschule Zürich Zurich Switzerland
2Now at Berkeley Seismological Laboratory, University of California, Berkeley, California, USA.
3Institute of Theoretical Geophysics, Cambridge University, Cambridge, UK
4Institute of Geophysics, Eidgenossische Technische Hochschule, Zurich, Zurich, Switzerland

Tóm tắt

One‐dimensional seismic reference models are known to be a nonunique solution to global seismic data, hampering an interpretation in terms of physical structure. Here we test the compatibility of the simplest hypothesis of a mantle convecting as a whole, with a constant pyrolitic composition with phase transitions, directly against the kind of seismic data that went into global seismic reference models, focusing on upper mantle structure down to 800 km depth. By randomly varying the elastic and anelastic parameters of the main mantle minerals within their uncertainty bounds, we generate a set of 100,000 adiabatic, pyrolitic models. A small number of these models (<0.1%) give a fit to far‐regional P and S travel times (reprocessed ISC catalog, Δ = 18.5°–26°) and fundamental spheroidal and toroidal modes (reference Earth model Web page, l > 60) that is as satisfactory as the fit of preliminary reference Earth model (PREM) or AK135(‐F). Although the accepted models have widely different combinations of the mineral parameters, there is a preference for a relatively high olivine shear modulus and its pressure and temperature derivatives, relatively low wadsleyite bulk and shear parameters, and relatively high ringwoodite bulk modulus derivatives. The resulting seismic profiles are very similar and, compared to PREM or AK135, have lower velocities above 400 km, larger jumps near “410,” lower transition zone gradients, lower jumps around “660,” and stronger gradients directly below. Such physical models that fit seismic data well enough to be useful as a seismic reference model can significantly facilitate physical interpretation of seismic structures.

Từ khóa


Tài liệu tham khảo

K. Aki P. G. Richards 2002 Univ. Sci. Books Herndon Va

10.1007/PL00001161

Bassin C., 2000, The current limits of resolution for surface‐wave tomography in North America, Eos Trans. AGU, 81

10.1038/nature01918

10.1046/j.1365-246X.2000.00053.x

10.1146/annurev.ea.20.050192.002523

10.1029/JZ057i002p00227

K. E. Bullen 1975 CRC Press Boca Raton Fla

10.1016/S0031-9201(03)00156-0

10.1046/j.1365-246X.2002.01677.x

10.1046/j.1525-1314.2002.00398.x

10.1029/2002GL014768

10.1029/JB094iB02p01895

Durek J. J., 1996, A radial model of anelasticity consistent with long‐period surface‐wave attenuation, Bull. Seismol. Soc. Am., 86, 144, 10.1785/BSSA08601A0144

10.1016/0031-9201(81)90046-7

10.1016/0031-9201(75)90017-5

10.1785/BSSA0880030722

10.1098/rsta.2002.1077

10.1127/0935-1221/2001/0013-0437

10.1029/2001JB000340

10.1038/nature01559

10.1046/j.1365-246X.2003.02036.x

10.1029/GM039p0231

10.1126/science.279.5357.1698

10.1029/92JB00068

10.1029/GM117p0265

Jackson I., 1998, The Earth's Mantle: Composition, Structure and Evolution, 405, 10.1017/CBO9780511573101.012

10.1029/2001JB001225

10.1029/93GL01767

10.1007/s000240050130

10.1029/2001JB000214

10.1029/2003JB002438

10.1111/j.1365-246X.1995.tb03540.x

10.1038/289234a0

10.1029/GM117p0181

Masters G., 2000, Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, 63, 10.1029/GM117p0063

Mattern E., 2003, Inversion for lower mantle composition and temperature from elasticity parameters and thermodynamic modeling, Eos Trans. AGU, 84

10.1111/j.1365-246X.1996.tb06548.x

10.1029/97JB02122

10.1029/2003JB002821

A. E. Ringwood 1975 McGraw‐Hill New York

10.1029/2003JB002610

10.1016/S0012-821X(00)00209-0

10.1029/2000GL012339

Sambridge M., 1999, Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble, Geophys. J. Int., 138, 726

10.1029/2000RG000089

10.1029/GM117p0115

10.1038/35079053

10.1029/2004GL019582

10.1016/S0040-1951(97)00019-X

10.1029/97JB00550

10.1029/GL012i007p00417

Woodhouse J. H., 1988, Seismological Aogorithms: Computational Methods and Computer Programs, 321

10.1029/2001JB000817