Phylogenetic and selection pressure analyses of cold stress-associated PAL-Like and Lec-RLK genes in antarctic mosses
Tài liệu tham khảo
Bravo, 2005, Characterization of antifreeze activity in Antarctic plants, J. Exp. Bot., 56, 1189, 10.1093/jxb/eri112
Miura, 2013, Cold signaling and cold response in plants, Int. J. Mol. Sci., 14, 5312, 10.3390/ijms14035312
Gupta, 2014, Antifreeze proteins enable plants to survive in freezing conditions, J. Biosci., 39, 931, 10.1007/s12038-014-9468-2
Thomashow, 1999, Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Biol., 50, 571, 10.1146/annurev.arplant.50.1.571
Chang, 2014, Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens, Plant Physiol., 165, 826, 10.1104/pp.113.230540
Beike, 2015, Insights from the cold transcriptome of Physcomitrella patens : global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation, New Phytol., 205, 869, 10.1111/nph.13004
Seo, 2013, Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions, Planta, 237, 1415, 10.1007/s00425-013-1882-4
Staiger, 2013, Alternative splicing at the intersection of biological timing, development, and stress responses, Plant Cell, 10, 3640, 10.1105/tpc.113.113803
Victoria, 2011, In silico comparative analysis of SSR markers in plants, BMC Plant Biol., 11, 15, 10.1186/1471-2229-11-15
Mutz, 2013, Transcriptome analysis using next-generation sequencing, Curr. Opin. Biotechnol., 24, 22, 10.1016/j.copbio.2012.09.004
Bolger, 2014, Plant genome sequencing - applications for crop improvement, Curr. Opin. Biotechnol., 26, 31, 10.1016/j.copbio.2013.08.019
Strickler, 2012, Designing a transcriptome next-generation sequencing project for a nonmodel plant species, Am. J. Bot., 99, 257, 10.3732/ajb.1100292
Ferreira de Carvalho, 2013, Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae), Heredity, 110, 181, 10.1038/hdy.2012.76
Haas, 2013, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc., 8, 1494, 10.1038/nprot.2013.084
Hüttenhofer, 2005, Non-coding RNAs: hope or hype?, Trends Genet., 21, 289, 10.1016/j.tig.2005.03.007
Rensing, 2002, Moss transcriptome and beyond, Trends Plant Sci., 7, 535, 10.1016/S1360-1385(02)02363-4
Delaux, 2019, Reconstructing trait evolution in plant evo-devo studies, Curr. Biol., 29, R1110, 10.1016/j.cub.2019.09.044
Quatrano, 2007, Physcomitrella patens: mosses enter the genomic age, Curr. Opin. Plant Biol., 10, 182, 10.1016/j.pbi.2007.01.005
Bolger, 2017, Plant genome and transcriptome annotations: from misconceptions to simple solutions, Brief. Bioinformatics, 1
Nakabayashi, 2015, Integrated metabolomics for abiotic stress responses in plants, Curr. Opin. Plant Biol., 24, 10, 10.1016/j.pbi.2015.01.003
Pedersen, 2005, Taxonomic and nomenclatural implications of phylogenetic studies of the bryaceae based on molecular data and morphology, Bryologist, 108, 123, 10.1639/0007-2745(2005)108[123:TANIOP]2.0.CO;2
Stark, 2010, Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae), Bryologist, 113, 788, 10.1639/0007-2745-113.4.788
Goffinet, 2007, Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta), Ann. Bot., 99, 747, 10.1093/aob/mcm010
Fife, 2012, 67, 1
Crosby, 2000
Shaw, 2006, A revision of the moss genus Pohlia Hedw. (Mniaceae) in Australia, Syst. Bot., 31, 247, 10.1600/036364406777585694
2010
Suárez, 2011, Pohlia Hedw. section Pohlia (Bryaceae) in central and South America, Nova Hedwigia, 92, 453, 10.1127/0029-5035/2011/0092-0453
Wyatt, 2012, 3, 61
Clarke, 2009, Genetic structure of East Antarctic populations of the moss Ceratodon purpureus, Antarct. Sci., 21, 51, 10.1017/S0954102008001466
Burley, 1990, Revision of the genus Ceratodon (Bryophyta), 1, 17
Liu, 2013, Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss, Extremophiles, 17, 391, 10.1007/s00792-013-0528-6
Wang, 2017, PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance, PLoS One, 12, e0172869, 10.1371/journal.pone.0172869
Gao, 2015, De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration, BMC Genomics, 16, 416, 10.1186/s12864-015-1633-y
Victoria, 2011, Establishment of the moss Polytrichum juniperinum Hedw. under axenic conditions, Biosci. J., 27, 673
Goecks, 2010, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol., 11, 1, 10.1186/gb-2010-11-8-r86
Van Bel, 2013, TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes, Genome Biol., 14, R134, 10.1186/gb-2013-14-12-r134
Proost, 2009, PLAZA: a comparative genomics resource to study gene and genome evolution in plants, Plant Cell, 21, 3718, 10.1105/tpc.109.071506
Liu, 2017, The L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis, Plant Growth Regul., 81, 409, 10.1007/s10725-016-0217-4
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Murrell, 2012, Detecting individual sites subject to episodic diversifying selection, PLoS Genet., 8, e1002764, 10.1371/journal.pgen.1002764
Smith, 2015, An adaptive branch-site random effects model for efficient detection of episodic diversifying selection, Mol. Biol. Evol., 32, 1342, 10.1093/molbev/msv022
Murrell, 2015, Gene-wide identification of episodic selection, Mol. Biol. Evol., 32, 1365, 10.1093/molbev/msv035
Pond, 2005, Not so different after all: a comparison of methods for detecting amino acid sites under selection, Mol. Biol. Evol., 5, 1208, 10.1093/molbev/msi105
Larkin, 2007, Clustal W and clustal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404
Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, 406
Tamura, 2007, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596, 10.1093/molbev/msm092
Posada, 2008, jModelTest: phylogenetic model averaging, Mol. Biol. Evol., 25, 1253, 10.1093/molbev/msn083
Drummond, 2007, BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 7, 214, 10.1186/1471-2148-7-214
Victoria, 2012, Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants, Genome (Ottawa. Online), 55, 883
Duan, 2012, Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data, BMC Genomics, 13, 392, 10.1186/1471-2164-13-392
Yang, 2013, Optimizing de novo assembly of short-read RNA-seq data for phylogenomics, BMC Genomics, 14, 328, 10.1186/1471-2164-14-328
Nakasugi, 2014, Combining transcriptome assemblies from multiple de novoassemblers in the allo-tetraploid plant Nicotiana benthamiana, PLoS One, 9, 1, 10.1371/journal.pone.0091776
Czaban, 2015, Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation, BMC Genomics, 16, 1, 10.1186/s12864-015-1447-y
Zhang, 2013, Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing, BMC Plant Biol., 13, 228, 10.1186/1471-2229-13-228
Hu, 2016, De novo transcriptome assembly and characterization for the widespread and stress-tolerant conifer Platycladus orientalis, PLoS One, 11, 1
Paterson, 2009, The Sorghum bicolor genome and the diversification of grasses, Nature, 457, 551, 10.1038/nature07723
Huynh, 2015, Insights into transcriptomes of Big and Low sagebrush, PLoS One, 10, 1, 10.1371/journal.pone.0127593
Johri, 2003, Hormonal regulation of moss protonema development and the possible origin of plant hormonal responses in bryophytes, Indian J. Biotechnol., 2, 9
Rodriguez, 2008, Stress tolerance in plants via habitat-adapted symbiosis, ISME J., 2, 404, 10.1038/ismej.2007.106
Lehti-Shiu, 2012, Diversity, classification and function of the plant protein kinase superfamily, Philos. Trans. Biol. Sci., 367, 2619, 10.1098/rstb.2012.0003
Mastrangelo, 2012, Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity, Plant Sci., 185-186, 40, 10.1016/j.plantsci.2011.09.006
Camm, 1977, Phenylalanine Ammonia lyase, Progress in Phytochemistry, 4, 169
Jones, 1984, Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development, Phytochemistry, 23, 1349, 10.1016/S0031-9422(00)80465-3
Saibo, 2009, Transcription factors and regulation of photosynthetic and related metabolis under environmental stresses, Ann. Bot., 103, 609, 10.1093/aob/mcn227
Wolf, 2010, The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation, Plant Physiol., 153, 1123, 10.1104/pp.110.154658
Shaw, 1990, Metal and cotolerances in the moss Funaria hygrometrica, Can. J. Bot., 68, 2275, 10.1139/b90-290
Werner, 1991, Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw, Planta, 186, 99, 10.1007/BF00201503
Banu-Fattah, 2005, Funaria hygrometrica Hedw. (Funnariaceae) from Bangladesh, Bangladesh J. Bot., 34, 121
Wang, 2008, Responses and tolerance to salt stress in bryophytes, Plant Signaling & Behaivior, 3, 516, 10.4161/psb.3.8.6337
Szövényi, 2013, Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss, Mol. Biol. Evol., 30, 1929, 10.1093/molbev/mst095
Xu, 2009, Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom, BMC Bioinformatics, 10, S3, 10.1186/1471-2105-10-S11-S3
Leyva, 1995, Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light- dependent manner, Plant Physiol., 108, 39, 10.1104/pp.108.1.39
Minami, 1989, Structure and some characterization of the gene for phenylalanine ammonialyase from rice plants, Eur. J. Biochem., 185, 19, 10.1111/j.1432-1033.1989.tb15075.x
Wang, 2009, Proteomic analysis of the cold stress response in the moss Physcomitrella patens, Proteomics, 9, 4529, 10.1002/pmic.200900062
Murata, 1983, Molecular species composition of Phosphati- dylglycerols from chilling-sensitive and chilling-resistant plants, Plant Cell Physiol., 24, 81, 10.1093/oxfordjournals.pcp.a076516
Lee, 2013, Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress, Planta, 237, 823, 10.1007/s00425-012-1797-5
Byun, 2015, Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants, Plant Sci., 236, 61, 10.1016/j.plantsci.2015.03.020
Davies, 2016, Antarctic moss is home to many epiphytic bacteria that secrete antifreeze proteins, Environ. Microbiol. Rep., 8, 1, 10.1111/1758-2229.12360
Matlin, 2005, Understanding alternative splicing: towards a cellular code, Nat. Rev. Mol. Cell Biol., 6, 386, 10.1038/nrm1645
Syed, 2012, Alternative splicing in plants – coming of age, Trends Plant Sci., 17, 616, 10.1016/j.tplants.2012.06.001
Iida, 2004, Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences, Nucleic Acids Res., 32, 5096, 10.1093/nar/gkh845
Dombrowski, 2012, Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum, J. Plant Physiol., 169, 915, 10.1016/j.jplph.2012.03.003
Jain, 2012, Calcium dependent protein kinase (CDPK) expression during fruit development in cultivated peanut (Arachis hypogaea) under Ca2+ -sufficient and -deficient in regimens growth, J. Plant Physiol., 168, 2272, 10.1016/j.jplph.2011.07.005
Wang, 2012, Expression of a heterologous SnRK1 in tomato increases carbon assimilation, uptake and modifies fruit development nitrogen, J. Plant Physiol., 169, 1173, 10.1016/j.jplph.2012.04.013
Xiong, 2002, Cell signaling during cold, drought, and salt stress, Plant Cell, 14, S165, 10.1105/tpc.000596
Shiu, 2004, Comparative analysis of the Receptor-Like Kinase family in Arabidopsis and rice, Plant Cell, 16, 1220, 10.1105/tpc.020834
Shiu, 2003, Expansion of the receptor- like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol., 132, 530, 10.1104/pp.103.021964
Hunter, 1997, The protein kinases of budding yeast: six score and more, Trends Biochem. Sci., 22, 18, 10.1016/S0968-0004(96)10068-2
Shiu, 2001, Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, PNAS, 98, 10763, 10.1073/pnas.181141598