Phylogenetic and selection pressure analyses of cold stress-associated PAL-Like and Lec-RLK genes in antarctic mosses

Current Plant Biology - Tập 24 - Trang 100178 - 2020
Mônica Munareto Minozzo1, Geferson Fernando Metz1, Maria Victória Magalhães de Vargas1, Antônio Batista Pereira1, Filipe de Carvalho Victoria1
1Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa – Campus São Gabriel, Avenida Antonio Trilha 1847, CEP 97300-162, Rio Grande do Sul, Brazil

Tài liệu tham khảo

Bravo, 2005, Characterization of antifreeze activity in Antarctic plants, J. Exp. Bot., 56, 1189, 10.1093/jxb/eri112 Miura, 2013, Cold signaling and cold response in plants, Int. J. Mol. Sci., 14, 5312, 10.3390/ijms14035312 Gupta, 2014, Antifreeze proteins enable plants to survive in freezing conditions, J. Biosci., 39, 931, 10.1007/s12038-014-9468-2 Thomashow, 1999, Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Biol., 50, 571, 10.1146/annurev.arplant.50.1.571 Chang, 2014, Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens, Plant Physiol., 165, 826, 10.1104/pp.113.230540 Beike, 2015, Insights from the cold transcriptome of Physcomitrella patens : global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation, New Phytol., 205, 869, 10.1111/nph.13004 Seo, 2013, Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions, Planta, 237, 1415, 10.1007/s00425-013-1882-4 Staiger, 2013, Alternative splicing at the intersection of biological timing, development, and stress responses, Plant Cell, 10, 3640, 10.1105/tpc.113.113803 Victoria, 2011, In silico comparative analysis of SSR markers in plants, BMC Plant Biol., 11, 15, 10.1186/1471-2229-11-15 Mutz, 2013, Transcriptome analysis using next-generation sequencing, Curr. Opin. Biotechnol., 24, 22, 10.1016/j.copbio.2012.09.004 Bolger, 2014, Plant genome sequencing - applications for crop improvement, Curr. Opin. Biotechnol., 26, 31, 10.1016/j.copbio.2013.08.019 Strickler, 2012, Designing a transcriptome next-generation sequencing project for a nonmodel plant species, Am. J. Bot., 99, 257, 10.3732/ajb.1100292 Ferreira de Carvalho, 2013, Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae), Heredity, 110, 181, 10.1038/hdy.2012.76 Haas, 2013, De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc., 8, 1494, 10.1038/nprot.2013.084 Hüttenhofer, 2005, Non-coding RNAs: hope or hype?, Trends Genet., 21, 289, 10.1016/j.tig.2005.03.007 Rensing, 2002, Moss transcriptome and beyond, Trends Plant Sci., 7, 535, 10.1016/S1360-1385(02)02363-4 Delaux, 2019, Reconstructing trait evolution in plant evo-devo studies, Curr. Biol., 29, R1110, 10.1016/j.cub.2019.09.044 Quatrano, 2007, Physcomitrella patens: mosses enter the genomic age, Curr. Opin. Plant Biol., 10, 182, 10.1016/j.pbi.2007.01.005 Bolger, 2017, Plant genome and transcriptome annotations: from misconceptions to simple solutions, Brief. Bioinformatics, 1 Nakabayashi, 2015, Integrated metabolomics for abiotic stress responses in plants, Curr. Opin. Plant Biol., 24, 10, 10.1016/j.pbi.2015.01.003 Pedersen, 2005, Taxonomic and nomenclatural implications of phylogenetic studies of the bryaceae based on molecular data and morphology, Bryologist, 108, 123, 10.1639/0007-2745(2005)108[123:TANIOP]2.0.CO;2 Stark, 2010, Sex ratios and the shy male hypothesis in the moss Bryum argenteum (Bryaceae), Bryologist, 113, 788, 10.1639/0007-2745-113.4.788 Goffinet, 2007, Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta), Ann. Bot., 99, 747, 10.1093/aob/mcm010 Fife, 2012, 67, 1 Crosby, 2000 Shaw, 2006, A revision of the moss genus Pohlia Hedw. (Mniaceae) in Australia, Syst. Bot., 31, 247, 10.1600/036364406777585694 2010 Suárez, 2011, Pohlia Hedw. section Pohlia (Bryaceae) in central and South America, Nova Hedwigia, 92, 453, 10.1127/0029-5035/2011/0092-0453 Wyatt, 2012, 3, 61 Clarke, 2009, Genetic structure of East Antarctic populations of the moss Ceratodon purpureus, Antarct. Sci., 21, 51, 10.1017/S0954102008001466 Burley, 1990, Revision of the genus Ceratodon (Bryophyta), 1, 17 Liu, 2013, Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss, Extremophiles, 17, 391, 10.1007/s00792-013-0528-6 Wang, 2017, PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance, PLoS One, 12, e0172869, 10.1371/journal.pone.0172869 Gao, 2015, De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration, BMC Genomics, 16, 416, 10.1186/s12864-015-1633-y Victoria, 2011, Establishment of the moss Polytrichum juniperinum Hedw. under axenic conditions, Biosci. J., 27, 673 Goecks, 2010, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol., 11, 1, 10.1186/gb-2010-11-8-r86 Van Bel, 2013, TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes, Genome Biol., 14, R134, 10.1186/gb-2013-14-12-r134 Proost, 2009, PLAZA: a comparative genomics resource to study gene and genome evolution in plants, Plant Cell, 21, 3718, 10.1105/tpc.109.071506 Liu, 2017, The L-type lectin receptor-like kinase (PnLecRLK1) from the Antarctic moss Pohlia nutans enhances chilling-stress tolerance and abscisic acid sensitivity in Arabidopsis, Plant Growth Regul., 81, 409, 10.1007/s10725-016-0217-4 Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389 Murrell, 2012, Detecting individual sites subject to episodic diversifying selection, PLoS Genet., 8, e1002764, 10.1371/journal.pgen.1002764 Smith, 2015, An adaptive branch-site random effects model for efficient detection of episodic diversifying selection, Mol. Biol. Evol., 32, 1342, 10.1093/molbev/msv022 Murrell, 2015, Gene-wide identification of episodic selection, Mol. Biol. Evol., 32, 1365, 10.1093/molbev/msv035 Pond, 2005, Not so different after all: a comparison of methods for detecting amino acid sites under selection, Mol. Biol. Evol., 5, 1208, 10.1093/molbev/msi105 Larkin, 2007, Clustal W and clustal X version 2.0, Bioinformatics, 23, 2947, 10.1093/bioinformatics/btm404 Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4, 406 Tamura, 2007, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596, 10.1093/molbev/msm092 Posada, 2008, jModelTest: phylogenetic model averaging, Mol. Biol. Evol., 25, 1253, 10.1093/molbev/msn083 Drummond, 2007, BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 7, 214, 10.1186/1471-2148-7-214 Victoria, 2012, Phylogenetic relationships and selective pressure on gene families related to iron homeostasis in land plants, Genome (Ottawa. Online), 55, 883 Duan, 2012, Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data, BMC Genomics, 13, 392, 10.1186/1471-2164-13-392 Yang, 2013, Optimizing de novo assembly of short-read RNA-seq data for phylogenomics, BMC Genomics, 14, 328, 10.1186/1471-2164-14-328 Nakasugi, 2014, Combining transcriptome assemblies from multiple de novoassemblers in the allo-tetraploid plant Nicotiana benthamiana, PLoS One, 9, 1, 10.1371/journal.pone.0091776 Czaban, 2015, Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation, BMC Genomics, 16, 1, 10.1186/s12864-015-1447-y Zhang, 2013, Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing, BMC Plant Biol., 13, 228, 10.1186/1471-2229-13-228 Hu, 2016, De novo transcriptome assembly and characterization for the widespread and stress-tolerant conifer Platycladus orientalis, PLoS One, 11, 1 Paterson, 2009, The Sorghum bicolor genome and the diversification of grasses, Nature, 457, 551, 10.1038/nature07723 Huynh, 2015, Insights into transcriptomes of Big and Low sagebrush, PLoS One, 10, 1, 10.1371/journal.pone.0127593 Johri, 2003, Hormonal regulation of moss protonema development and the possible origin of plant hormonal responses in bryophytes, Indian J. Biotechnol., 2, 9 Rodriguez, 2008, Stress tolerance in plants via habitat-adapted symbiosis, ISME J., 2, 404, 10.1038/ismej.2007.106 Lehti-Shiu, 2012, Diversity, classification and function of the plant protein kinase superfamily, Philos. Trans. Biol. Sci., 367, 2619, 10.1098/rstb.2012.0003 Mastrangelo, 2012, Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity, Plant Sci., 185-186, 40, 10.1016/j.plantsci.2011.09.006 Camm, 1977, Phenylalanine Ammonia lyase, Progress in Phytochemistry, 4, 169 Jones, 1984, Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development, Phytochemistry, 23, 1349, 10.1016/S0031-9422(00)80465-3 Saibo, 2009, Transcription factors and regulation of photosynthetic and related metabolis under environmental stresses, Ann. Bot., 103, 609, 10.1093/aob/mcn227 Wolf, 2010, The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation, Plant Physiol., 153, 1123, 10.1104/pp.110.154658 Shaw, 1990, Metal and cotolerances in the moss Funaria hygrometrica, Can. J. Bot., 68, 2275, 10.1139/b90-290 Werner, 1991, Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw, Planta, 186, 99, 10.1007/BF00201503 Banu-Fattah, 2005, Funaria hygrometrica Hedw. (Funnariaceae) from Bangladesh, Bangladesh J. Bot., 34, 121 Wang, 2008, Responses and tolerance to salt stress in bryophytes, Plant Signaling & Behaivior, 3, 516, 10.4161/psb.3.8.6337 Szövényi, 2013, Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss, Mol. Biol. Evol., 30, 1929, 10.1093/molbev/mst095 Xu, 2009, Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom, BMC Bioinformatics, 10, S3, 10.1186/1471-2105-10-S11-S3 Leyva, 1995, Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light- dependent manner, Plant Physiol., 108, 39, 10.1104/pp.108.1.39 Minami, 1989, Structure and some characterization of the gene for phenylalanine ammonialyase from rice plants, Eur. J. Biochem., 185, 19, 10.1111/j.1432-1033.1989.tb15075.x Wang, 2009, Proteomic analysis of the cold stress response in the moss Physcomitrella patens, Proteomics, 9, 4529, 10.1002/pmic.200900062 Murata, 1983, Molecular species composition of Phosphati- dylglycerols from chilling-sensitive and chilling-resistant plants, Plant Cell Physiol., 24, 81, 10.1093/oxfordjournals.pcp.a076516 Lee, 2013, Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress, Planta, 237, 823, 10.1007/s00425-012-1797-5 Byun, 2015, Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants, Plant Sci., 236, 61, 10.1016/j.plantsci.2015.03.020 Davies, 2016, Antarctic moss is home to many epiphytic bacteria that secrete antifreeze proteins, Environ. Microbiol. Rep., 8, 1, 10.1111/1758-2229.12360 Matlin, 2005, Understanding alternative splicing: towards a cellular code, Nat. Rev. Mol. Cell Biol., 6, 386, 10.1038/nrm1645 Syed, 2012, Alternative splicing in plants – coming of age, Trends Plant Sci., 17, 616, 10.1016/j.tplants.2012.06.001 Iida, 2004, Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences, Nucleic Acids Res., 32, 5096, 10.1093/nar/gkh845 Dombrowski, 2012, Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum, J. Plant Physiol., 169, 915, 10.1016/j.jplph.2012.03.003 Jain, 2012, Calcium dependent protein kinase (CDPK) expression during fruit development in cultivated peanut (Arachis hypogaea) under Ca2+ -sufficient and -deficient in regimens growth, J. Plant Physiol., 168, 2272, 10.1016/j.jplph.2011.07.005 Wang, 2012, Expression of a heterologous SnRK1 in tomato increases carbon assimilation, uptake and modifies fruit development nitrogen, J. Plant Physiol., 169, 1173, 10.1016/j.jplph.2012.04.013 Xiong, 2002, Cell signaling during cold, drought, and salt stress, Plant Cell, 14, S165, 10.1105/tpc.000596 Shiu, 2004, Comparative analysis of the Receptor-Like Kinase family in Arabidopsis and rice, Plant Cell, 16, 1220, 10.1105/tpc.020834 Shiu, 2003, Expansion of the receptor- like kinase/Pelle gene family and receptor-like proteins in Arabidopsis, Plant Physiol., 132, 530, 10.1104/pp.103.021964 Hunter, 1997, The protein kinases of budding yeast: six score and more, Trends Biochem. Sci., 22, 18, 10.1016/S0968-0004(96)10068-2 Shiu, 2001, Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases, PNAS, 98, 10763, 10.1073/pnas.181141598