Methods to evaluate the twin formation energy: comparative studies of the atomic simulations and in-situ TEM tensile tests

Springer Science and Business Media LLC - Tập 50 - Trang 1-9 - 2020
Hong-Kyu Kim1, Sung-Hoon Kim1,2, Jae-Pyoung Ahn1
1Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
2Mechanical R&D Group, Samsung Electronics, Gyeonggi-do, Republic of Korea

Tóm tắt

Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.

Tài liệu tham khảo

P.M. Anderson, J.P. Hirth, J. Lothe, Theory of dislocations (Cambridge University Press, Cambridge, 2017) P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953 C. Brandl, P. Derlet, H.V. Swygenhoven, General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys. Rev. B 76, 54124–54124 (2007). https://doi.org/10.1103/physrevb.76.054124 J.W. Christian, V. Vítek, Dislocations and stacking faults. Rep. Prog. Phys. 33, 307–411 (1970). https://doi.org/10.1088/0034-4885/33/1/307 G.L.W. Cross, A. Schirmeisen, P. Grütter, U.T. Dürig, Plasticity, healing and shakedown in sharp-asperity nanoindentation. Nat. Mater. 5, 370–376 (2006). https://doi.org/10.1038/nmat1632 M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen Embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288 (1983). https://doi.org/10.1103/physrevlett.50.1285 T. Ezaz, H. Sehitoglu, H.J. Maier, Energetics of twinning in martensitic NiTi. Acta Mater. 59, 5893–5904 (2011). https://doi.org/10.1016/j.actamat.2011.05.063 A.G. Frøseth, P.M. Derlet, H.V. Swygenhoven, Twinning in nanocrystalline fee metals. Adv. Eng. Mater. 7, 16–20 (2005). https://doi.org/10.1002/adem.200400163 D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60, 1432–1446 (2012). https://doi.org/10.1016/j.jmps.2012.04.009 B. Hwang, M. Kang, S. Lee, C.R. Weinberger, P. Loya, J. Lou, S.H. Oh, B. Kim, S.M. Han, Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires. Nanoscale 7, 15657–15664 (2015). https://doi.org/10.1039/c5nr03902a B.W. Jeong, J. Ihm, G.-D. Lee, Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Phys. Rev. B 78, 165403 (2008). https://doi.org/10.1103/physrevb.78.165403 Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605–608 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.033 M. Jo, Y.M. Koo, B.-J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Theory for plasticity of face-centered cubic metals. Proc. Natl. Acad. Sci. 111, 6560–6565 (2014). https://doi.org/10.1073/pnas.1400786111 C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998) S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55, 6843–6851 (2007). https://doi.org/10.1016/j.actamat.2007.08.042 S. Kibey, L. Wang, J. Liu, H. Johnson, H. Sehitoglu, D. Johnson, Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys. Rev. B 79, 214202–214202 (2009). https://doi.org/10.1103/physrevb.79.214202 H.-K. Kim, S.-H. Kim, J.-P. Ahn, J.-C. Lee, Deformation criterion for face-centered-cubic metal nanowires. Mater. Sci. Eng. 736, 431–437 (2018a). https://doi.org/10.1016/j.msea.2018.08.108 S.-H. Kim, H.-K. Kim, J.-H. Seo, D.-M. Whang, J.-P. Ahn, J.-C. Lee, Deformation twinning of ultrahigh strength aluminum nanowire. Acta Mater. 160, 14–21 (2018b). https://doi.org/10.1016/j.actamat.2018.08.047 S.-H. Kim, J.-H. Park, H.-K. Kim, J.-P. Ahn, D.-M. Whang, J.-C. Lee, Twin boundary sliding in single crystalline Cu and Al nanowires. Acta Mater. 196, 69–77 (2020). https://doi.org/10.1016/j.actamat.2020.06.028 G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0 G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993). https://doi.org/10.1103/physrevb.48.13115 J.S. Langer, E. Bouchbinder, T. Lookman, Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58, 3718–3732 (2010). https://doi.org/10.1016/j.actamat.2010.03.009 J.W. Lee, M.G. Kang, B.S. Kim, B.H. Hong, D. Whang, S.W. Hwang, Single crystalline aluminum nanowires with ideal resistivity. Scr. Mater. 63, 1009–1012 (2010). https://doi.org/10.1016/j.scriptamat.2010.07.026 S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 5, 1–10 (2014). https://doi.org/10.1038/ncomms4033 S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774–1779 (2010). https://doi.org/10.1021/nl100263p G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099–3108 (2000). https://doi.org/10.1103/physrevb.62.3099 F.R. Nabarro, M.S. Duesbery, Dislocations in solids (Elsevier, Amsterdam, 2002) S. Ogata, J. Li, S. Yip, Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102–224102 (2005). https://doi.org/10.1103/physrevb.71.224102 H. Park, J. Zimmerman, Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 54106–54106 (2005). https://doi.org/10.1103/physrevb.72.054106 R. People, Physics and applications of GexSi1-x/Si strained-layer heterostructures. IEEE J. Quantum Electron. 22, 1696–1710 (1986). https://doi.org/10.1109/jqe.1986.1073152 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039 J.-H. Seo, H.S. Park, Y. Yoo, T.-Y. Seong, J. Li, J.-P. Ahn, B. Kim, I.-S. Choi, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 13, 5112–5116 (2013). https://doi.org/10.1021/nl402282n J.H. Seo, Y. Yoo, N.Y. Park, S.W. Yoon, H. Lee, S. Han, S.W. Lee, T.Y. Seong, S.C. Lee, K.B. Lee, P.R. Cha, H.S. Park, B. Kim, J.P. Ahn, Superplastic deformation of defect-free au nanowires via coherent twin propagation. Nano Lett. 11, 3499–3502 (2011). https://doi.org/10.1021/nl2022306 Y. Sun, E. Kaxiras, Slip energy barriers in aluminium and implications for ductile-brittle behaviour. Philos. Mag. 75, 1117–1127 (1997). https://doi.org/10.1080/01418619708214014 H.V. Swygenhoven, P.M. Derlet, A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399–403 (2004). https://doi.org/10.1038/nmat1136 E.B. Tadmor, S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765–793 (2003). https://doi.org/10.1016/s0022-5096(03)00005-x V. Vitek, Intrinsic stacking faults in body-centered cubic. Acta Metallurgica Sin. Engl. Lett. 18, 773–786 (1968). https://doi.org/10.1007/s40195-015-0271-3 L. Wang, Z. Liu, Z. Zhuang, Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures. Int. J. Plast. 81, 267–283 (2016). https://doi.org/10.1016/j.ijplas.2016.01.010 Y.F. Wen, J. Sun, Generalized planar fault energies and mechanical twinning in gamma TiAl alloys. Scr. Mater. 68, 759–762 (2013). https://doi.org/10.1016/j.scriptamat.2012.12.032 X. Wu, Y.T. Zhu, E. Ma, Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: an experimental evaluation. Appl. Phys. Lett. 88, 121905–121905 (2006). https://doi.org/10.1063/1.2186968