Free vibration analysis of plate assemblies using the dynamic stiffness method based on the higher order shear deformation theory
Tài liệu tham khảo
Kirchhoff, 1850, Uber das Gleichgwich und die Bewegung einer Elastischen Scheibe, Journal fur Angewandte Mathematik, 40, 51
Reissner, 1944, On the theory of bending of elastic plates, Journal of Mathematical Physics, 23, 184, 10.1002/sapm1944231184
Reddy, 1984, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51, 745, 10.1115/1.3167719
Reddy, 1985, Stability and vibrations of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory, Journal of Sound and Vibration, 98, 157, 10.1016/0022-460X(85)90383-9
Batra, 2005, Vibrations of thick isotropic plates with higher order shear and normal deformable Plate theories, Computers Structures, 83, 934, 10.1016/j.compstruc.2004.11.023
Shufrin, 2005, Stability and vibration of shear deformable plates––first order and higher order analyses, International Journal of Solids and Structures, 42, 1225, 10.1016/j.ijsolstr.2004.06.067
Hosseini-Hashemi, 2011, Taher, Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory, Applied Mathematical Modelling, 35, 708, 10.1016/j.apm.2010.07.028
Bathe, 1976
Hinton, 1988
Rock, 1976, A finite element method for the free vibration of plates allowing for transverse shear deformation, Computers Structures, 6, 37, 10.1016/0045-7949(76)90071-7
Mackerle, 1995, Static and dynamic analysis of plates using finite element and boundary element techniques — A bibliography (1992–1994), Finite Elements in Analysis and Design, 20, 139, 10.1016/0168-874X(95)90012-7
Lim, 1999, Vibration of plates and shells using finite elements (1996-1997), Finite Elements in Analysis and Design, 31, 223, 10.1016/S0168-874X(98)00052-3
Banerjee, 1997, Dynamic stiffness formulation for structural elements: A general approach, Computers Structures, 63, 101, 10.1016/S0045-7949(96)00326-4
Lee, 2000, The spectral element method in structural dynamics, Shock and Vibration Digest, 32, 451, 10.1177/058310240003200601
Doyle, 1997
Boscolo, 2011, Dynamic stiffness elements and their application for plates using first order shear deformation theory, Computers Structures, 89, 395, 10.1016/j.compstruc.2010.11.005
Boscolo, 2011, Dynamic stiffness method for exact inplane free vibration analysis of plates and plate assemblies, Journal of Sound and Vibration, 330, 2928, 10.1016/j.jsv.2010.12.022
Boscolo, 2012, JR, Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory, Computers Structures 96-97, 61, 10.1016/j.compstruc.2012.01.002
Boscolo, 2012, Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part II: Results and application, Computers Structures, 96-97, 74, 10.1016/j.compstruc.2012.01.003
Pagani, 2013, Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures, Journal of Sound and Vibration, 332, 6104, 10.1016/j.jsv.2013.06.023
Fazzolari, 2013, An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies, Composite Structures, 96, 262, 10.1016/j.compstruct.2012.08.033
Boscolo, 2014, Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates, Journal of Sound and Vibration, 333, 200, 10.1016/j.jsv.2013.08.031
Kevorkian, 2001, An accurate method for free vibration analysis of structures with application to plates, Journal of Sound and Vibration, 246, 795, 10.1006/jsvi.2001.3709
Casimir, 2005, The dynamic stiffness matrix of two-dimensional elements: application to Kirchhoff׳s plate continuous elements, Journal of Sound and Vibration, 287, 571, 10.1016/j.jsv.2004.11.013
Ghorbel, 2015, Dynamic stiffness formulation for free orthotropic plates, Journal of Sound and Vibration, 346, 361, 10.1016/j.jsv.2015.02.020
Nefovska-Danilovic, 2015, In-plane free vibration and response analysis of isotropic rectangular plates using dynamic stiffness method, Computers Structures, 152, 82, 10.1016/j.compstruc.2015.02.001
Kolarevic, 2015, Free Vibration Analysis of Rectangular Mindlin Plates Using Dynamic Stiffness Method, Journal of Sound and Vibration, 359, 84, 10.1016/j.jsv.2015.06.031
Nosier, 1991, A study of non-linear dynamic equations of higher-order shear deformation plate theories, International Journal of Nonlinear Mechanics, 26, 233, 10.1016/0020-7462(91)90054-W
Banerjee, 2015, Dynamic stiffness matrix of a rectangular plate for the general case, Journal of Sound and Vibration, 342, 177, 10.1016/j.jsv.2014.12.031
Wittrick, 1970, A general algorithm for computing natural frequencies of elastic structures, Quarterly Journal of Mechanics and Applied Mathematics, 24, 263, 10.1093/qjmam/24.3.263
ABAQUS, User manual. Version 6.9, Providence, RI, USA: DS SIMULIA Corp, 2009.
Matlab, MathWorks Inc. The Language of Technical Computing, MATLAB 2011b, 2011.
Liew, 1993, A continuum three-dimensional vibration analysis of thick rectangular plates, International Journal of Solids and Structures, 30, 3357, 10.1016/0020-7683(93)90089-P
Irie, 1978, Free vibration of cross-shaped, I shaped and L-shaped plates clamped at all edges, Journal of Sound and Vibration, 61, 571, 10.1016/0022-460X(78)90456-X