Studies on the removal of 2-propanol by Ag@Fe2O3 core–shell structured catalyst

Kan-Sen Chou1, Min-You Lin1, Hsin-Hsien Wu1
1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan

Tài liệu tham khảo

Caruso, 2001, Nanoengineering of particle surfaces, Adv Mater, 13, 11, 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N Reiss, 2009, Core/shell semiconductor nanocrystals, Small, 5, 154, 10.1002/smll.200800841 Shi, 2011, Preparation and photocatalytic activity of cerium doped anatase titanium dioxide coated magnetite composite, J Taiwan Inst Chem Eng, 42, 652, 10.1016/j.jtice.2010.10.001 Aslan, 2007, Fluorescent core–shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single particle sensing platforms, J Am Chem Soc, 129, 1524, 10.1021/ja0680820 Haldar, 2008, Au@ZnO core–shell nanoparticles are efficient energy acceptors with organic dye donors, J Phys Chem C, 112, 11650, 10.1021/jp8031308 Chou, 2007, Fabrication and characterization of silver core and porous silica shell nanocomposite particles, Microporous Mesoporous Mater, 98, 208, 10.1016/j.micromeso.2006.09.006 Nagy, 1999, High temperature partial oxidation reactions over silver catalysts, Appl Catal A Gen, 188, 337, 10.1016/S0926-860X(99)00246-X Waterhouse, 2003, Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study, Appl Surf Sci, 214, 36, 10.1016/S0169-4332(03)00350-7 Wang, 2008, Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles, J Colloid Interface Sci, 323, 182, 10.1016/j.jcis.2008.03.043 Cheng, 2010, Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires, J Hazard Mater, 177, 971, 10.1016/j.jhazmat.2010.01.013 Zheng, 2007, Ag/ZnO heterostructure nanocrystals: synthesis, characterization and photocatalysis, Inorg Chem, 46, 6980, 10.1021/ic700688f Zheng, 2008, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J Phys Chem C, 112, 10773, 10.1021/jp8027275 Sun, 2011, Facile synthesis of Ag@Fe2O3 core–shell composite nanoparticles by an in situ method, Micro Nano Lett, 6, 82, 10.1049/mnl.2010.0149 Wei, 2011, Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen, J Mater Chem, 21, 16344, 10.1039/c1jm13691g Avgouropoulos, 2002, A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal Today, 75, 157, 10.1016/S0920-5861(02)00058-5 Scire, 2001, Catalytic combustion of volatile organic compounds over IB metal catalysts over Fe2O3, Catal Commun, 2, 229, 10.1016/S1566-7367(01)00035-8 Kao CY. Studies on the printable nano-materials and devices for flexible electronics. PhD dissertation. Hsinchu, Taiwan: National Tsing Hua University; 2010. Zanella, 2005, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea, Appl Catal A Gen, 291, 67, 10.1016/j.apcata.2005.02.045 Hamada, 1991, Formation of uniform silver particles from bis (1,2-ethanediamine) silver(I) complex, Colloid Polym Sci, 269, 187, 10.1007/BF00660310 Munteanu, 1997, Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems, Therrnochim Acta, 291, 171, 10.1016/S0040-6031(96)03097-3 Yamazaki, 2004, The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging, Appl Catal B Environ, 53, 1, 10.1016/j.apcatb.2004.04.010