Metal nanobullets for multidrug resistant bacteria and biofilms
Tài liệu tham khảo
Cohen, 2000, Changing patterns of infectious disease, Nature, 406, 762, 10.1038/35021206
Huh, 2011, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 156, 128, 10.1016/j.jconrel.2011.07.002
Highton, 1972, Penicillin and cell wall synthesis: a study of Bacillus cereus by electron microscopy, J. Bacteriol., 109, 1181, 10.1128/JB.109.3.1181-1190.1972
Goldman, 1995, Vancomycin, Pediatr. Rev., 16, 357, 10.1542/pir.16-9-357
Taber, 1987, Bacterial uptake of aminoglycoside antibiotics, Microbiol. Rev., 51, 439, 10.1128/MMBR.51.4.439-457.1987
Pan, 1999, Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones, Antimicrob. Agents Chemother., 43, 1129, 10.1128/AAC.43.5.1129
Battaner, 1974, Rifampin: inhibition of ribonucleic acid synthesis after potentiation by amphotericin B in Saccharomyces cerevisiae, Antimicrob. Agents Chemother., 5, 371, 10.1128/AAC.5.4.371
Quinlivan, 2000, Mechanism of the antimicrobial drug trimethoprim revisited, FASEB J., 14, 2519, 10.1096/fj.99-1037com
Richter, 2003, The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species, J. Antimicrob. Chemother., 52, 123, 10.1093/jac/dkg288
Witte, 2004, International dissemination of antibiotic resistant strains of bacterial pathogens, Infect. Genet. Evol., 4, 187, 10.1016/j.meegid.2003.12.005
Riley, 2012, Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge, Biochem. Soc. Trans., 40, 1438, 10.1042/BST20120179
Baker-Austin, 2006, Co-selection of antibiotic and metal resistance, Trends Microbiol., 14, 176, 10.1016/j.tim.2006.02.006
Tadesse, 2012, Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002, Emerg. Infect. Dis., 18, 741, 10.3201/eid1805.111153
Baptista, 2008, Gold nanoparticles for the development of clinical diagnosis methods, Anal. Bioanal. Chem., 391, 943, 10.1007/s00216-007-1768-z
Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U. S. A., 100, 13549, 10.1073/pnas.2232479100
Han, 2007, Multi-functional gold nanoparticles for drug delivery, 48
Allaker, 2008, Potential impact of nanotechnology on the control of infectious diseases, Trans. R. Soc. Trop. Med. Hyg., 102, 1, 10.1016/j.trstmh.2007.07.003
Rai, 2010, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J. Mater. Chem., 20, 6789, 10.1039/c0jm00817f
Goodman, 2004, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897, 10.1021/bc049951i
Whitesides, 2005, Nanoscience, nanotechnology, and chemistry, Small, 1, 172, 10.1002/smll.200400130
Raghupathi, 2011, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27, 4020, 10.1021/la104825u
Zhang, 2010, Development of nanoparticles for antimicrobial drug delivery, Curr. Med. Chem., 17, 585, 10.2174/092986710790416290
Huang, 2011, Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids, Biomaterials, 32, 214, 10.1016/j.biomaterials.2010.08.076
Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004
Leid, 2012, In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria, J. Antimicrob. Chemother., 67, 138, 10.1093/jac/dkr408
S.T., 1998, The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse, Quintessence Int., 29, 223
Smith, 2002, Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria, Proc. Natl. Acad. Sci. U. S. A., 99, 6434, 10.1073/pnas.082188899
James, 1994, Methicillin-resistant Staphylococcus epidermidis in infection of hip arthroplasties, J. Bone Joint Surg. (Br.), 76, 725, 10.1302/0301-620X.76B5.8083259
Litzler, 2007, Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species, J. Thorac. Cardiovasc. Surg., 134, 1025, 10.1016/j.jtcvs.2007.06.013
Percival, 1963, The role of penicillinase in determining natural and acquired resistance of Gram-negative bacteria to penicillins, J. Gen. Microbiol., 32, 77, 10.1099/00221287-32-1-77
Yoneyama, 2006, Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 70, 1060, 10.1271/bbb.70.1060
Wright, 2005, Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv. Drug Deliv. Rev., 57, 1451, 10.1016/j.addr.2005.04.002
Ochiai, 1959, Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains (in Japanese), Hihon Iji Shimpor, 1861, 34
Koonin, 2001, Horizontal gene transfer in prokaryotes: quantification and classification, Annu. Rev. Microbiol., 55, 709, 10.1146/annurev.micro.55.1.709
Nielsen, 1998, Barriers to horizontal gene transfer by natural transformation in soil bacteria, APMIS Suppl., 84, 77, 10.1111/j.1600-0463.1998.tb05653.x
Poole, 2002, Mechanisms of bacterial biocide and antibiotic resistance, J. Appl. Microbiol., 92, 55s, 10.1046/j.1365-2672.92.5s1.8.x
Jayaraman, 2009, Antibiotic resistance: an overview of mechanisms and a paradigm shift, Curr. Sci. India, 96, 1475
Abraham, 1988, An enzyme from bacteria able to destroy penicillin. 1940, Rev. Infect. Dis., 10, 677
Kaatz, 1993, Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus, Antimicrob. Agents Chemother., 37, 1086, 10.1128/AAC.37.5.1086
Ferrero, 1995, Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus, Antimicrob. Agents Chemother., 39, 1554, 10.1128/AAC.39.7.1554
Ng, 1996, Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus, Antimicrob. Agents Chemother., 40, 1881, 10.1128/AAC.40.8.1881
Takahata, 1996, Mutations in the gyrA and grlA genes of quinolone-resistant clinical isolates of methicillin-resistant Staphylococcus aureus, J. Antimicrob. Chemother., 38, 543, 10.1093/jac/38.3.543
Bockstael, 2009, Antimicrobial resistance in bacteria, Cent. Eur. J. Med., 4, 141, 10.2478/s11536-008-0088-9
Spink, 1944, Para-aminobenzoic acid production by staphylococci, J. Exp. Med., 79, 331, 10.1084/jem.79.4.331
Deck, 2012, Sulfonamides, trimethoprim, & quinolones, 831
Iliades, 2004, Dihydropteroate synthase mutations in Pneumocystis jiroveci can affect sulfamethoxazole resistance in a Saccharomyces cerevisiae model, Antimicrob. Agents Chemother., 48, 2617, 10.1128/AAC.48.7.2617-2623.2004
Lubelski, 2007, Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria, Microbiol. Mol. Biol. Rev., 71, 463, 10.1128/MMBR.00001-07
Pao, 1998, Major facilitator superfamily, Microbiol. Mol. Biol. Rev., 62, 1, 10.1128/MMBR.62.1.1-34.1998
Kuroda, 2009, Multidrug efflux transporters in the MATE family, Biochim. Biophys. Acta, 1794, 763, 10.1016/j.bbapap.2008.11.012
Jack, 2001, The drug/metabolite transporter superfamily, Eur. J. Biochem., 268, 3620, 10.1046/j.1432-1327.2001.02265.x
Li, 2004, Efflux-mediated drug resistance in bacteria, Drugs, 64, 159, 10.2165/00003495-200464020-00004
Palmer, 2007, Bacterial cell attachment, the beginning of a biofilm, J. Ind. Microbiol. Biotechnol., 34, 577, 10.1007/s10295-007-0234-4
Donlan, 2001, Biofilm formation: a clinically relevant microbiological process, Clin. Infect. Dis., 33, 1387, 10.1086/322972
Arciola, 2012, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials, 33, 5967, 10.1016/j.biomaterials.2012.05.031
Hentzer, 2005, Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation, Biofilms, 2, 37, 10.1017/S1479050505001699
Garrett, 2008, Characterisation of bacterial adhesion and removal in a flow chamber by micromanipulation measurements, Biotechnol. Lett., 30, 427, 10.1007/s10529-007-9580-6
Dunne, 2002, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 155, 10.1128/CMR.15.2.155-166.2002
Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165
Harrison, 2007, Microbial ecology of the cystic fibrosis lung, Microbiology, 153, 917, 10.1099/mic.0.2006/004077-0
Petersen, 2005, DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation, J. Bacteriol., 187, 4392, 10.1128/JB.187.13.4392-4400.2005
Park, 2003, Influence of topology on bacterial social interaction, Proc. Natl. Acad. Sci. U. S. A., 100, 13910, 10.1073/pnas.1935975100
O'Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49
Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318
Parsek, 2003, Bacterial biofilms: an emerging link to disease pathogenesis, Annu. Rev. Microbiol., 57, 677, 10.1146/annurev.micro.57.030502.090720
Stewart, 2002, Mechanisms of antibiotic resistance in bacterial biofilms, Int. J. Med. Microbiol., 292, 107, 10.1078/1438-4221-00196
Hoyle, 1992, Disparate efficacy of tobramycin on Ca(2+)-, Mg(2+)-, and HEPES-treated Pseudomonas aeruginosa biofilms, Can. J. Microbiol., 38, 1214, 10.1139/m92-201
Duguid, 1992, Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin, J. Antimicrob. Chemother., 30, 803, 10.1093/jac/30.6.803
Evans, 1990, Effect of growth-rate on resistance of Gram-negative biofilms to cetrimide, J. Antimicrob. Chemother., 26, 473, 10.1093/jac/26.4.473
Anwar, 1992, Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin, Antimicrob. Agents Chemother., 36, 1208, 10.1128/AAC.36.6.1208
Poolman, 1998, Regulation of compatible solute accumulation in bacteria, Mol. Microbiol., 29, 397, 10.1046/j.1365-2958.1998.00875.x
Storz, 1999, Oxidative stress, Curr. Opin. Microbiol., 2, 188, 10.1016/S1369-5274(99)80033-2
Tresse, 1995, The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics, J. Antimicrob. Chemother., 36, 521, 10.1093/jac/36.3.521
Spoering, 2001, Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials, J. Bacteriol., 183, 6746, 10.1128/JB.183.23.6746-6751.2001
Yoon, 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373, 572, 10.1016/j.scitotenv.2006.11.007
Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4, 707, 10.1016/j.actbio.2007.11.006
Stoimenov, 2002, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18, 6679, 10.1021/la0202374
Feynman, 1991, There's plenty of room at the bottom, Science, 254, 1300
Shaw, 1999, Gold-based therapeutic agents, Chem. Rev., 99, 2589, 10.1021/cr980431o
Finkelstein, 1976, Auranofin. New oral gold compound for treatment of rheumatoid arthritis, Ann. Rheum. Dis., 35, 251, 10.1136/ard.35.3.251
El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n
Hutter, 2001, Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol, J. Phys. Chem. B, 105, 11159, 10.1021/jp011424y
Wang, 2012, Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy, ACS Nano, 6, 5070, 10.1021/nn300694v
El-Brolossy, 2008, Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique, Eur. Phys. J. Spec. Top, 153, 361, 10.1140/epjst/e2008-00462-0
Lin, 2013, Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy, ACS Nano, 7, 5320, 10.1021/nn4011686
Badwaik, 2012, Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method, Nanoscale Res. Lett., 7, 623, 10.1186/1556-276X-7-623
Pissuwan, 2010, Functionalised gold nanoparticles for controlling pathogenic bacteria, Trends Biotechnol., 28, 207, 10.1016/j.tibtech.2009.12.004
Kuo, 2009, Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia, Chem. Commun. (Camb.), 4853, 10.1039/b907274h
Wang, 2010, Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles, Chem. Eur. J., 16, 5600, 10.1002/chem.201000176
Nirmala, 2007, Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study, Colloids Surf. A Physicochem. Eng. Asp., 297, 63, 10.1016/j.colsurfa.2006.10.024
Burygin, 2009, On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles, Nanoscale Res. Lett., 4, 794, 10.1007/s11671-009-9316-8
Chamundeeswari, 2010, Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity, Biotechnol. Appl. Biochem., 55, 29, 10.1042/BA20090198
Zharov, 2006, Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys. J., 90, 619, 10.1529/biophysj.105.061895
Norman, 2008, Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods, Nano Lett., 8, 302, 10.1021/nl0727056
Huang, 2007, Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria, Nanomedicine, 2, 777, 10.2217/17435889.2.6.777
Gil-Tomas, 2007, Lethal photosensitisation of Staphylococcus aureus using a toluidine blue o-tiopronin-gold nanoparticle conjugate, J. Mater. Chem., 17, 3739, 10.1039/b706615e
Gu, 2003, Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Lett., 3, 1261, 10.1021/nl034396z
Brown, 2012, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl. Environ. Microbiol., 78, 2768, 10.1128/AEM.06513-11
Cui, 2012, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials, 33, 2327, 10.1016/j.biomaterials.2011.11.057
Zhou, 2012, Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin, J. Nanobiotechnol., 10, 19, 10.1186/1477-3155-10-19
Berger, 1976, Electrically generated silver ions: quantitative effects on bacterial and mammalian cells, Antimicrob. Agents Chemother., 9, 357, 10.1128/AAC.9.2.357
Slawson, 1992, Silver accumulation and resistance in Pseudomonas stutzeri, Arch. Microbiol., 158, 398, 10.1007/BF00276299
Zhao, 1998, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals, 11, 27, 10.1023/A:1009253223055
Silver, 1996, Bacterial heavy metal resistance: new surprises, Annu. Rev. Microbiol., 50, 753, 10.1146/annurev.micro.50.1.753
Crabtree, 2003, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit. Dial. Int., 23, 368, 10.1177/089686080302300410
Dunn, 2004, The role of Acticoat with nanocrystalline silver in the management of burns, Burns, 30, S1, 10.1016/S0305-4179(04)90000-9
Petica, 2008, Colloidal silver solutions with antimicrobial properties, Mater. Sci. Eng. B, 152, 22, 10.1016/j.mseb.2008.06.021
Rai, 2009, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27, 76, 10.1016/j.biotechadv.2008.09.002
Jain, 2005, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter, Biotechnol. Bioeng., 90, 59, 10.1002/bit.20368
Ip, 2006, Antimicrobial activities of silver dressings: an in vitro comparison, J. Med. Microbiol., 55, 59, 10.1099/jmm.0.46124-0
Aymonier, 2002, Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties, Chem. Commun. (Camb.), 3018, 10.1039/b208575e
Tian, 2007, Topical delivery of silver nanoparticles promotes wound healing, ChemMedChem, 2, 129, 10.1002/cmdc.200600171
Pallavicini, 2010, Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity, J. Colloid Interface Sci., 350, 110, 10.1016/j.jcis.2010.06.019
Chernousova, 2013, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923
Lara, 2010, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria, World J. Microbiol. Biotechnol., 26, 615, 10.1007/s11274-009-0211-3
Percival, 2007, Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model, Int. Wound J., 4, 186, 10.1111/j.1742-481X.2007.00296.x
Lara, 2010, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnol., 8, 1, 10.1186/1477-3155-8-1
Kim, 2008, Antifungal effect of silver nanoparticles on dermatophytes, J. Microbiol. Biotechnol., 18, 1482
Su, 2011, Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria, PLoS One, 6, e21125, 10.1371/journal.pone.0021125
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012
Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 1, 10.1088/0957-4484/18/22/225103
Knetsch, 2011, New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles, Polymers, 3, 340, 10.3390/polym3010340
Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnol. Biol. Med., 3, 95, 10.1016/j.nano.2006.12.001
Feng, 2000, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52, 662, 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Matsumura, 2003, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate, Appl. Environ. Microbiol., 69, 4278, 10.1128/AEM.69.7.4278-4281.2003
Hatchett, 1996, Electrochemistry of sulfur adlayers on the low-index faces of silver, J. Phys. Chem., 100, 9854, 10.1021/jp953757z
Hsin, 2008, The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells, Toxicol. Lett., 179, 130, 10.1016/j.toxlet.2008.04.015
Rensing, 2003, Escherichia coli mechanisms of copper homeostasis in a changing environment, FEMS Microbiol. Rev., 27, 197, 10.1016/S0168-6445(03)00049-4
Gordon, 1994, Responses of diverse heterotrophic bacteria to elevated copper concentrations, Can. J. Microbiol., 40, 408, 10.1139/m94-067
Espírito Santo, 2010, Isolation and characterization of bacteria resistant to metallic copper surfaces, Appl. Environ. Microbiol., 76, 1341, 10.1128/AEM.01952-09
Karlin, 1993, Metalloenzymes, structural motifs, and inorganic models, Science, 261, 701, 10.1126/science.7688141
Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10
Macomber, 2009, The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proc. Natl. Acad. Sci. U. S. A., 106, 8344, 10.1073/pnas.0812808106
Wheeldon, 2008, Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory, J. Antimicrob. Chemother., 62, 522, 10.1093/jac/dkn219
Mehtar, 2008, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study, J. Hosp. Infect., 68, 45, 10.1016/j.jhin.2007.10.009
Ibrahim, 2011, Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria, J. Biosci. Bioeng., 112, 570, 10.1016/j.jbiosc.2011.08.017
Faundez, 2004, Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni, BMC Microbiol., 4, 19, 10.1186/1471-2180-4-19
Santo, 2008, Contribution of copper Ion resistance to survival of Escherichia coli on metallic copper surfaces, Appl. Environ. Microbiol., 74, 977, 10.1128/AEM.01938-07
Tian, 2012, Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria, J. Microbiol., 50, 586, 10.1007/s12275-012-2067-8
Noyce, 2006, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect., 63, 289, 10.1016/j.jhin.2005.12.008
Steindl, 2012, Antimicrobial effect of copper on multidrug-resistant bacteria, Wien. Tierarztl. Monat., 99, 38
Santo, 2011, Bacterial killing by dry metallic copper surfaces, Appl. Environ. Microbiol., 77, 794, 10.1128/AEM.01599-10
Warnes, 2010, Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs, Appl. Environ. Microbiol., 76, 5390, 10.1128/AEM.03050-09
Cioffi, 2005, Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem. Mater., 17, 5255, 10.1021/cm0505244
Gouda, 2010, Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric, J. Ind. Text., 39, 203, 10.1177/1528083709103142
Cady, 2011, Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro, Adv. Eng. Mater., 21, 2506
Gunawan, 2011, Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, ACS Nano, 5, 7214, 10.1021/nn2020248
Maniprasad, 2012, Novel copper (Cu) loaded core–shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties, J. Biomed. Nanotechnol., 8, 558, 10.1166/jbn.2012.1423
R.R.V.a.J.B. A, 2011, Nanoparticles and their potential application as antimicrobials, 1, 13
Seil, 2012, Antibacterial effect of zinc oxide nanoparticles combined with ultrasound, Nanotechnology, 23, 495101, 10.1088/0957-4484/23/49/495101
Pramanik, 2012, A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage, Colloids Surf. B: Biointerfaces, 96, 50, 10.1016/j.colsurfb.2012.03.021
Renz, 1921, Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren, Helv. Chim. Acta, 4, 961, 10.1002/hlca.192100401101
Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039
Chorianopoulos, 2011, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol., 28, 164, 10.1016/j.fm.2010.07.025
Li, 2005, Visible-light-driven N–F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater., 17, 2596, 10.1021/cm049099p
Cermenati, 1997, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-Fenton generated OH radicals and superoxide dismutase, J. Phys. Chem. B, 101, 2650, 10.1021/jp962700p
Fu, 2005, Anatase TiO2 nanocomposites for antimicrobial coatings, J. Phys. Chem. B, 109, 8889, 10.1021/jp0502196
Li, 2008, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42, 4591, 10.1016/j.watres.2008.08.015
Dastjerdi, 2010, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surf. B: Biointerfaces, 79, 5, 10.1016/j.colsurfb.2010.03.029
Miyagi, 2004, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity, Chem. Phys. Lett., 390, 399, 10.1016/j.cplett.2004.04.042
Shah, 2008, The antibacterial effects of biphasic brookite–anatase titanium dioxide nanoparticles on multiple-drug-resistant Staphylococcus aureus, J. Biomed. Nanotechnol., 4, 339, 10.1166/jbn.2008.324
Daoud, 2005, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities, Surf. Sci., 599, 69, 10.1016/j.susc.2005.09.038
Hajkova, 2007, Photocatalytic effect of TiO2 films on viruses and bacteria, Plasma Process. Polym., 4, S397, 10.1002/ppap.200731007
Mahmoodi, 2006, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295, 159, 10.1016/j.jcis.2005.08.007
Sheel, 2008, Biocidal silver and silver/titania composite films grown by chemical vapour deposition, Int. J. Photoenergy, 2008, 10.1155/2008/168185
Erkan, 2006, Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films, J. Photochem. Photobiol. A Chem., 184, 313, 10.1016/j.jphotochem.2006.05.001
Pal, 2007, Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light, J. Photochem. Photobiol. A Chem., 186, 335, 10.1016/j.jphotochem.2006.09.002
Matsunaga, 1988, Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 54, 1330, 10.1128/AEM.54.6.1330-1333.1988
Saito, 1992, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, 369, 10.1016/1011-1344(92)85115-B
Amézaga-Madrid, 2003, TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films, J. Photochem. Photobiol. B Biol., 70, 45, 10.1016/S1011-1344(03)00054-X
Amézaga-Madrid, 2002, Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films, FEMS Microbiol. Rev., 211, 183, 10.1016/S0378-1097(02)00686-9
Hu, 2007, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, 4982, 10.1021/la063626x
Liou, 2012, Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria, Arch. Immunol. Ther. Exp., 60, 267, 10.1007/s00005-012-0178-x
Wei, 1994, Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system, Environ. Toxicol. Chem., 28, 934
Ciston, 2009, Controlling biofilm growth using reactive ceramic ultrafiltration membranes, J. Membr. Sci., 342, 263, 10.1016/j.memsci.2009.06.049
Dhandapani, 2012, Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm, J. Photochem. Photobiol. B, 110, 43, 10.1016/j.jphotobiol.2012.03.003
Simon-Deckers, 2009, Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Toxicol. Chem., 43, 8423
Szabó, 2003, Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties, Colloids Surf. A Physicochem. Eng. Asp., 230, 23, 10.1016/j.colsurfa.2003.09.010
Yamamoto, 2000, Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution, Int. J. Inorg. Mater., 2, 451, 10.1016/S1466-6049(00)00045-3
Ansari, 2012, Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India, Appl. Microbiol. Biotechnol., 94, 467, 10.1007/s00253-011-3733-1
Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h
Sharma, 2010, Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties, Thin Solid Films, 519, 1224, 10.1016/j.tsf.2010.08.073
Ikawa, 2010, Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application, Plasma Process. Polym., 7, 33, 10.1002/ppap.200900090
Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Rev., 279, 71, 10.1111/j.1574-6968.2007.01012.x
Sawai, 2004, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay, J. Appl. Microbiol., 96, 803, 10.1111/j.1365-2672.2004.02234.x
Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 1, 10.1088/1468-6996/9/3/035004
Koper, 1997, Alkaline-Earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities, Chem. Mater., 9, 2468, 10.1021/cm970357a
Koper, 2002, Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins, Curr. Microbiol., 44, 49, 10.1007/s00284-001-0073-x
Sawai, 2000, Antibacterial characteristics of magnesium oxide powder, World J. Microbiol. Biotechnol., 16, 187, 10.1023/A:1008916209784
Blecher, 2011, The growing role of nanotechnology in combating infectious disease, Virulence, 2, 395, 10.4161/viru.2.5.17035
Awaya, 1997, Self-aligned passivation technology for copper interconnection using copper–aluminum alloy, Jpn. J. Appl. Phys., 36, 112, 10.1143/JJAP.36.1548
Li, 2004, Bacterial adhesion to glass and metal-oxide surfaces, Colloids Surf. B: Biointerfaces, 36, 81, 10.1016/j.colsurfb.2004.05.006
Mukherjee, 2011, Microbial activity of aluminium oxide nanoparticles for potential clinical applications, 245
Mishra, 2008, Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patients, Dig. J. Nanomater. Biostruct., 3, 159
Sadiq, 2011, Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications, 1, 245
Sadiq, 2009, Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles, Nanomedicine Nanotechnol. Biol. Med., 5, 282, 10.1016/j.nano.2009.01.002
Qiu, 2012, Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera, Proc. Natl. Acad. Sci. U. S. A., 109, 4944, 10.1073/pnas.1107254109
Xu, 2012, Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7, Biometals, 25, 45, 10.1007/s10534-011-9482-x
Chopra, 2007, The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?, J. Antimicrob. Chemother., 59, 587, 10.1093/jac/dkm006
Subbiahdoss, 2012, Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci, Acta Biomater., 8, 2047, 10.1016/j.actbio.2012.03.002
Gokulakrishnan, 2012, In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens, Asian Pac. J. Trop. Dis., 2, 411, 10.1016/S2222-1808(12)60089-9
Hernandez-Delgadillo, 2012, Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm, Int. J. Nanomedicine, 7, 2109
Syed, 2010, Antibacterial effects of tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus, New Microbiol., 33, 329
Roy, 2013, Antimicrobial activity of CaO nanoparticles, J. Biomed. Nanotechnol., 9, 1570, 10.1166/jbn.2013.1681
Wu, 2010, Bacterial responses to Cu-doped TiO2 nanoparticles, Sci. Total Environ., 408, 1755, 10.1016/j.scitotenv.2009.11.004
Fröhlich, 2012, Models for oral uptake of nanoparticles in consumer products, Toxicology, 291, 10, 10.1016/j.tox.2011.11.004
Brunner, 2006, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, Environ. Toxicol. Chem., 40, 4374
Hamilton, 2009, Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity, Part. Fibre Toxicol., 6, 35, 10.1186/1743-8977-6-35
Chen, 2009, Assessment of the in vivo toxicity of gold nanoparticles, Nanoscale Res. Lett., 4, 858, 10.1007/s11671-009-9334-6
Choi, 2007, Renal clearance of quantum dots, Nat. Biotechnol., 25, 1165, 10.1038/nbt1340
Schrurs, 2012, Focusing the research efforts, Nat. Nanotechnol., 7, 546, 10.1038/nnano.2012.148
2012, Join the dialogue, Nat. Nanotechnol., 7, 545, 10.1038/nnano.2012.150
Adhikari, 2013, Membrane-directed high bactericidal activity of (gold nanoparticle)–polythiophene composite for niche applications against pathogenic bacteria, Adv. Healthc. Mater., 2, 10.1002/adhm.201200278
Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 225103, 10.1088/0957-4484/18/22/225103
Panáček, 2006, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, 110, 16248, 10.1021/jp063826h
Jain, 2010, Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis, Indian J. Exp. Biol., 48, 1152
Nanda, 2009, Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomedicine Nanotechnol. Biol. Med., 5, 452, 10.1016/j.nano.2009.01.012
Saravanan, 2010, Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE, Colloids Surf. B: Biointerfaces, 77, 214, 10.1016/j.colsurfb.2010.01.026
Otari, 2013, A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity, Dalton Trans., 42, 9966, 10.1039/c3dt51093j
Doudi, 2013, Comparison of the effects of silver nanoparticles on pathogenic bacteria resistant to beta-lactam antibiotics (ESBLs) as a prokaryote model and Wistar rats as a eukaryote model, Med. Sci. Monit. Basic Res., 19, 103, 10.12659/MSMBR.883835
Ansari, 2011, Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections, Biol. Med., 3, 141
Eid, 2013, Bactericidal effect of poly(acrylamide/itaconic acid)–silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa, Appl. Biochem. Biotechnol., 171, 469, 10.1007/s12010-013-0357-1
Jena, 2012, Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells, Int. J. Nanomedicine, 7, 1805
Sambhy, 2006, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials, J. Am. Chem. Soc., 128, 9798, 10.1021/ja061442z
Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004
Lellouche, 2009, Antibiofilm activity of nanosized magnesium fluoride, Biomaterials, 30, 5969, 10.1016/j.biomaterials.2009.07.037
Taylor, 2012, Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms, Small, 8, 3016, 10.1002/smll.201200575
Mahmoudi, 2012, Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat, ACS Nano, 6, 2656, 10.1021/nn300042m
Kunkalekar, 2013, Antibacterial activity of silver-doped manganese dioxide nanoparticles on multidrug-resistant bacteria, J. Chem. Technol. Biotechnol., 88, 873, 10.1002/jctb.3915
Hillyer, 2001, Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles, J. Pharm. Sci., 90, 1927, 10.1002/jps.1143
Zhang, 2010, Toxicologic effects of gold nanoparticles in vivo by different administration routes, Int. J. Nanomedicine, 5, 771, 10.2147/IJN.S8428
Zhang, 2011, Size-dependent in vivo toxicity of PEG-coated gold nanoparticles, Int. J. Nanomedicine, 6, 2071, 10.2147/IJN.S21657
Dhar, 2011, Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies, J. Appl. Toxicol., 31, 411, 10.1002/jat.1595
Kim, 2008, Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats, Inhal. Toxicol., 20, 575, 10.1080/08958370701874663
Park, 2010, Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles, Environ. Toxicol. Pharmacol., 30, 162, 10.1016/j.etap.2010.05.004
Chen, 2006, Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett., 163, 109, 10.1016/j.toxlet.2005.10.003
Lei, 2008, Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity, Toxicol. Appl. Pharmacol., 232, 292, 10.1016/j.taap.2008.06.026
Duan, 2010, Interaction between nanoparticulate anatase TiO2 and lactate dehydrogenase, Biol. Trace Elem. Res., 136, 302, 10.1007/s12011-009-8548-x
Li, 2010, Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticles, Toxicol. Lett., 195, 161, 10.1016/j.toxlet.2010.03.1116
Bu, 2010, NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration, Nanotechnology, 21, 125105, 10.1088/0957-4484/21/12/125105
Chen, 2009, In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection, J. Appl. Toxicol., 29, 330, 10.1002/jat.1414
Wang, 2008, Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice, J. Nanoparticle Res., 10, 263, 10.1007/s11051-007-9245-3
Sayes, 2007, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles, Toxicol. Sci., 97, 163, 10.1093/toxsci/kfm018