Metal nanobullets for multidrug resistant bacteria and biofilms

Advanced Drug Delivery Reviews - Tập 78 - Trang 88-104 - 2014
Ching-Wen Chen1, Chia-Yen Hsu1, Syu-Ming Lai1, Wei-Jhe Syu1, Ting-Yi Wang1, Ping-Shan Lai1,2
1Department of Chemistry, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan
2Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan

Tài liệu tham khảo

Cohen, 2000, Changing patterns of infectious disease, Nature, 406, 762, 10.1038/35021206 Huh, 2011, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 156, 128, 10.1016/j.jconrel.2011.07.002 Highton, 1972, Penicillin and cell wall synthesis: a study of Bacillus cereus by electron microscopy, J. Bacteriol., 109, 1181, 10.1128/JB.109.3.1181-1190.1972 Goldman, 1995, Vancomycin, Pediatr. Rev., 16, 357, 10.1542/pir.16-9-357 Taber, 1987, Bacterial uptake of aminoglycoside antibiotics, Microbiol. Rev., 51, 439, 10.1128/MMBR.51.4.439-457.1987 Pan, 1999, Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones, Antimicrob. Agents Chemother., 43, 1129, 10.1128/AAC.43.5.1129 Battaner, 1974, Rifampin: inhibition of ribonucleic acid synthesis after potentiation by amphotericin B in Saccharomyces cerevisiae, Antimicrob. Agents Chemother., 5, 371, 10.1128/AAC.5.4.371 Quinlivan, 2000, Mechanism of the antimicrobial drug trimethoprim revisited, FASEB J., 14, 2519, 10.1096/fj.99-1037com Richter, 2003, The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species, J. Antimicrob. Chemother., 52, 123, 10.1093/jac/dkg288 Witte, 2004, International dissemination of antibiotic resistant strains of bacterial pathogens, Infect. Genet. Evol., 4, 187, 10.1016/j.meegid.2003.12.005 Riley, 2012, Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge, Biochem. Soc. Trans., 40, 1438, 10.1042/BST20120179 Baker-Austin, 2006, Co-selection of antibiotic and metal resistance, Trends Microbiol., 14, 176, 10.1016/j.tim.2006.02.006 Tadesse, 2012, Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002, Emerg. Infect. Dis., 18, 741, 10.3201/eid1805.111153 Baptista, 2008, Gold nanoparticles for the development of clinical diagnosis methods, Anal. Bioanal. Chem., 391, 943, 10.1007/s00216-007-1768-z Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U. S. A., 100, 13549, 10.1073/pnas.2232479100 Han, 2007, Multi-functional gold nanoparticles for drug delivery, 48 Allaker, 2008, Potential impact of nanotechnology on the control of infectious diseases, Trans. R. Soc. Trop. Med. Hyg., 102, 1, 10.1016/j.trstmh.2007.07.003 Rai, 2010, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J. Mater. Chem., 20, 6789, 10.1039/c0jm00817f Goodman, 2004, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897, 10.1021/bc049951i Whitesides, 2005, Nanoscience, nanotechnology, and chemistry, Small, 1, 172, 10.1002/smll.200400130 Raghupathi, 2011, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27, 4020, 10.1021/la104825u Zhang, 2010, Development of nanoparticles for antimicrobial drug delivery, Curr. Med. Chem., 17, 585, 10.2174/092986710790416290 Huang, 2011, Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids, Biomaterials, 32, 214, 10.1016/j.biomaterials.2010.08.076 Hajipour, 2012, Antibacterial properties of nanoparticles, Trends Biotechnol., 30, 499, 10.1016/j.tibtech.2012.06.004 Leid, 2012, In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria, J. Antimicrob. Chemother., 67, 138, 10.1093/jac/dkr408 S.T., 1998, The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse, Quintessence Int., 29, 223 Smith, 2002, Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria, Proc. Natl. Acad. Sci. U. S. A., 99, 6434, 10.1073/pnas.082188899 James, 1994, Methicillin-resistant Staphylococcus epidermidis in infection of hip arthroplasties, J. Bone Joint Surg. (Br.), 76, 725, 10.1302/0301-620X.76B5.8083259 Litzler, 2007, Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species, J. Thorac. Cardiovasc. Surg., 134, 1025, 10.1016/j.jtcvs.2007.06.013 Percival, 1963, The role of penicillinase in determining natural and acquired resistance of Gram-negative bacteria to penicillins, J. Gen. Microbiol., 32, 77, 10.1099/00221287-32-1-77 Yoneyama, 2006, Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 70, 1060, 10.1271/bbb.70.1060 Wright, 2005, Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv. Drug Deliv. Rev., 57, 1451, 10.1016/j.addr.2005.04.002 Ochiai, 1959, Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains (in Japanese), Hihon Iji Shimpor, 1861, 34 Koonin, 2001, Horizontal gene transfer in prokaryotes: quantification and classification, Annu. Rev. Microbiol., 55, 709, 10.1146/annurev.micro.55.1.709 Nielsen, 1998, Barriers to horizontal gene transfer by natural transformation in soil bacteria, APMIS Suppl., 84, 77, 10.1111/j.1600-0463.1998.tb05653.x Poole, 2002, Mechanisms of bacterial biocide and antibiotic resistance, J. Appl. Microbiol., 92, 55s, 10.1046/j.1365-2672.92.5s1.8.x Jayaraman, 2009, Antibiotic resistance: an overview of mechanisms and a paradigm shift, Curr. Sci. India, 96, 1475 Abraham, 1988, An enzyme from bacteria able to destroy penicillin. 1940, Rev. Infect. Dis., 10, 677 Kaatz, 1993, Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus, Antimicrob. Agents Chemother., 37, 1086, 10.1128/AAC.37.5.1086 Ferrero, 1995, Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus, Antimicrob. Agents Chemother., 39, 1554, 10.1128/AAC.39.7.1554 Ng, 1996, Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus, Antimicrob. Agents Chemother., 40, 1881, 10.1128/AAC.40.8.1881 Takahata, 1996, Mutations in the gyrA and grlA genes of quinolone-resistant clinical isolates of methicillin-resistant Staphylococcus aureus, J. Antimicrob. Chemother., 38, 543, 10.1093/jac/38.3.543 Bockstael, 2009, Antimicrobial resistance in bacteria, Cent. Eur. J. Med., 4, 141, 10.2478/s11536-008-0088-9 Spink, 1944, Para-aminobenzoic acid production by staphylococci, J. Exp. Med., 79, 331, 10.1084/jem.79.4.331 Deck, 2012, Sulfonamides, trimethoprim, & quinolones, 831 Iliades, 2004, Dihydropteroate synthase mutations in Pneumocystis jiroveci can affect sulfamethoxazole resistance in a Saccharomyces cerevisiae model, Antimicrob. Agents Chemother., 48, 2617, 10.1128/AAC.48.7.2617-2623.2004 Lubelski, 2007, Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria, Microbiol. Mol. Biol. Rev., 71, 463, 10.1128/MMBR.00001-07 Pao, 1998, Major facilitator superfamily, Microbiol. Mol. Biol. Rev., 62, 1, 10.1128/MMBR.62.1.1-34.1998 Kuroda, 2009, Multidrug efflux transporters in the MATE family, Biochim. Biophys. Acta, 1794, 763, 10.1016/j.bbapap.2008.11.012 Jack, 2001, The drug/metabolite transporter superfamily, Eur. J. Biochem., 268, 3620, 10.1046/j.1432-1327.2001.02265.x Li, 2004, Efflux-mediated drug resistance in bacteria, Drugs, 64, 159, 10.2165/00003495-200464020-00004 Palmer, 2007, Bacterial cell attachment, the beginning of a biofilm, J. Ind. Microbiol. Biotechnol., 34, 577, 10.1007/s10295-007-0234-4 Donlan, 2001, Biofilm formation: a clinically relevant microbiological process, Clin. Infect. Dis., 33, 1387, 10.1086/322972 Arciola, 2012, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials, 33, 5967, 10.1016/j.biomaterials.2012.05.031 Hentzer, 2005, Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation, Biofilms, 2, 37, 10.1017/S1479050505001699 Garrett, 2008, Characterisation of bacterial adhesion and removal in a flow chamber by micromanipulation measurements, Biotechnol. Lett., 30, 427, 10.1007/s10529-007-9580-6 Dunne, 2002, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 155, 10.1128/CMR.15.2.155-166.2002 Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165 Harrison, 2007, Microbial ecology of the cystic fibrosis lung, Microbiology, 153, 917, 10.1099/mic.0.2006/004077-0 Petersen, 2005, DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation, J. Bacteriol., 187, 4392, 10.1128/JB.187.13.4392-4400.2005 Park, 2003, Influence of topology on bacterial social interaction, Proc. Natl. Acad. Sci. U. S. A., 100, 13910, 10.1073/pnas.1935975100 O'Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49 Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318 Parsek, 2003, Bacterial biofilms: an emerging link to disease pathogenesis, Annu. Rev. Microbiol., 57, 677, 10.1146/annurev.micro.57.030502.090720 Stewart, 2002, Mechanisms of antibiotic resistance in bacterial biofilms, Int. J. Med. Microbiol., 292, 107, 10.1078/1438-4221-00196 Hoyle, 1992, Disparate efficacy of tobramycin on Ca(2+)-, Mg(2+)-, and HEPES-treated Pseudomonas aeruginosa biofilms, Can. J. Microbiol., 38, 1214, 10.1139/m92-201 Duguid, 1992, Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin, J. Antimicrob. Chemother., 30, 803, 10.1093/jac/30.6.803 Evans, 1990, Effect of growth-rate on resistance of Gram-negative biofilms to cetrimide, J. Antimicrob. Chemother., 26, 473, 10.1093/jac/26.4.473 Anwar, 1992, Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin, Antimicrob. Agents Chemother., 36, 1208, 10.1128/AAC.36.6.1208 Poolman, 1998, Regulation of compatible solute accumulation in bacteria, Mol. Microbiol., 29, 397, 10.1046/j.1365-2958.1998.00875.x Storz, 1999, Oxidative stress, Curr. Opin. Microbiol., 2, 188, 10.1016/S1369-5274(99)80033-2 Tresse, 1995, The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics, J. Antimicrob. Chemother., 36, 521, 10.1093/jac/36.3.521 Spoering, 2001, Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials, J. Bacteriol., 183, 6746, 10.1128/JB.183.23.6746-6751.2001 Yoon, 2007, Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Sci. Total Environ., 373, 572, 10.1016/j.scitotenv.2006.11.007 Ruparelia, 2008, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomater., 4, 707, 10.1016/j.actbio.2007.11.006 Stoimenov, 2002, Metal oxide nanoparticles as bactericidal agents, Langmuir, 18, 6679, 10.1021/la0202374 Feynman, 1991, There's plenty of room at the bottom, Science, 254, 1300 Shaw, 1999, Gold-based therapeutic agents, Chem. Rev., 99, 2589, 10.1021/cr980431o Finkelstein, 1976, Auranofin. New oral gold compound for treatment of rheumatoid arthritis, Ann. Rheum. Dis., 35, 251, 10.1136/ard.35.3.251 El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n Hutter, 2001, Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol, J. Phys. Chem. B, 105, 11159, 10.1021/jp011424y Wang, 2012, Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy, ACS Nano, 6, 5070, 10.1021/nn300694v El-Brolossy, 2008, Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique, Eur. Phys. J. Spec. Top, 153, 361, 10.1140/epjst/e2008-00462-0 Lin, 2013, Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy, ACS Nano, 7, 5320, 10.1021/nn4011686 Badwaik, 2012, Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method, Nanoscale Res. Lett., 7, 623, 10.1186/1556-276X-7-623 Pissuwan, 2010, Functionalised gold nanoparticles for controlling pathogenic bacteria, Trends Biotechnol., 28, 207, 10.1016/j.tibtech.2009.12.004 Kuo, 2009, Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia, Chem. Commun. (Camb.), 4853, 10.1039/b907274h Wang, 2010, Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles, Chem. Eur. J., 16, 5600, 10.1002/chem.201000176 Nirmala, 2007, Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study, Colloids Surf. A Physicochem. Eng. Asp., 297, 63, 10.1016/j.colsurfa.2006.10.024 Burygin, 2009, On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles, Nanoscale Res. Lett., 4, 794, 10.1007/s11671-009-9316-8 Chamundeeswari, 2010, Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity, Biotechnol. Appl. Biochem., 55, 29, 10.1042/BA20090198 Zharov, 2006, Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys. J., 90, 619, 10.1529/biophysj.105.061895 Norman, 2008, Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods, Nano Lett., 8, 302, 10.1021/nl0727056 Huang, 2007, Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria, Nanomedicine, 2, 777, 10.2217/17435889.2.6.777 Gil-Tomas, 2007, Lethal photosensitisation of Staphylococcus aureus using a toluidine blue o-tiopronin-gold nanoparticle conjugate, J. Mater. Chem., 17, 3739, 10.1039/b706615e Gu, 2003, Presenting vancomycin on nanoparticles to enhance antimicrobial activities, Nano Lett., 3, 1261, 10.1021/nl034396z Brown, 2012, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl. Environ. Microbiol., 78, 2768, 10.1128/AEM.06513-11 Cui, 2012, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials, 33, 2327, 10.1016/j.biomaterials.2011.11.057 Zhou, 2012, Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin, J. Nanobiotechnol., 10, 19, 10.1186/1477-3155-10-19 Berger, 1976, Electrically generated silver ions: quantitative effects on bacterial and mammalian cells, Antimicrob. Agents Chemother., 9, 357, 10.1128/AAC.9.2.357 Slawson, 1992, Silver accumulation and resistance in Pseudomonas stutzeri, Arch. Microbiol., 158, 398, 10.1007/BF00276299 Zhao, 1998, Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion, Biometals, 11, 27, 10.1023/A:1009253223055 Silver, 1996, Bacterial heavy metal resistance: new surprises, Annu. Rev. Microbiol., 50, 753, 10.1146/annurev.micro.50.1.753 Crabtree, 2003, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit. Dial. Int., 23, 368, 10.1177/089686080302300410 Dunn, 2004, The role of Acticoat with nanocrystalline silver in the management of burns, Burns, 30, S1, 10.1016/S0305-4179(04)90000-9 Petica, 2008, Colloidal silver solutions with antimicrobial properties, Mater. Sci. Eng. B, 152, 22, 10.1016/j.mseb.2008.06.021 Rai, 2009, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27, 76, 10.1016/j.biotechadv.2008.09.002 Jain, 2005, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter, Biotechnol. Bioeng., 90, 59, 10.1002/bit.20368 Ip, 2006, Antimicrobial activities of silver dressings: an in vitro comparison, J. Med. Microbiol., 55, 59, 10.1099/jmm.0.46124-0 Aymonier, 2002, Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties, Chem. Commun. (Camb.), 3018, 10.1039/b208575e Tian, 2007, Topical delivery of silver nanoparticles promotes wound healing, ChemMedChem, 2, 129, 10.1002/cmdc.200600171 Pallavicini, 2010, Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity, J. Colloid Interface Sci., 350, 110, 10.1016/j.jcis.2010.06.019 Chernousova, 2013, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923 Lara, 2010, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria, World J. Microbiol. Biotechnol., 26, 615, 10.1007/s11274-009-0211-3 Percival, 2007, Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model, Int. Wound J., 4, 186, 10.1111/j.1742-481X.2007.00296.x Lara, 2010, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnol., 8, 1, 10.1186/1477-3155-8-1 Kim, 2008, Antifungal effect of silver nanoparticles on dermatophytes, J. Microbiol. Biotechnol., 18, 1482 Su, 2011, Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria, PLoS One, 6, e21125, 10.1371/journal.pone.0021125 Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059 Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012 Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 1, 10.1088/0957-4484/18/22/225103 Knetsch, 2011, New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles, Polymers, 3, 340, 10.3390/polym3010340 Kim, 2007, Antimicrobial effects of silver nanoparticles, Nanomedicine Nanotechnol. Biol. Med., 3, 95, 10.1016/j.nano.2006.12.001 Feng, 2000, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res., 52, 662, 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 Matsumura, 2003, Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate, Appl. Environ. Microbiol., 69, 4278, 10.1128/AEM.69.7.4278-4281.2003 Hatchett, 1996, Electrochemistry of sulfur adlayers on the low-index faces of silver, J. Phys. Chem., 100, 9854, 10.1021/jp953757z Hsin, 2008, The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells, Toxicol. Lett., 179, 130, 10.1016/j.toxlet.2008.04.015 Rensing, 2003, Escherichia coli mechanisms of copper homeostasis in a changing environment, FEMS Microbiol. Rev., 27, 197, 10.1016/S0168-6445(03)00049-4 Gordon, 1994, Responses of diverse heterotrophic bacteria to elevated copper concentrations, Can. J. Microbiol., 40, 408, 10.1139/m94-067 Espírito Santo, 2010, Isolation and characterization of bacteria resistant to metallic copper surfaces, Appl. Environ. Microbiol., 76, 1341, 10.1128/AEM.01952-09 Karlin, 1993, Metalloenzymes, structural motifs, and inorganic models, Science, 261, 701, 10.1126/science.7688141 Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10 Macomber, 2009, The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proc. Natl. Acad. Sci. U. S. A., 106, 8344, 10.1073/pnas.0812808106 Wheeldon, 2008, Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory, J. Antimicrob. Chemother., 62, 522, 10.1093/jac/dkn219 Mehtar, 2008, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study, J. Hosp. Infect., 68, 45, 10.1016/j.jhin.2007.10.009 Ibrahim, 2011, Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria, J. Biosci. Bioeng., 112, 570, 10.1016/j.jbiosc.2011.08.017 Faundez, 2004, Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni, BMC Microbiol., 4, 19, 10.1186/1471-2180-4-19 Santo, 2008, Contribution of copper Ion resistance to survival of Escherichia coli on metallic copper surfaces, Appl. Environ. Microbiol., 74, 977, 10.1128/AEM.01938-07 Tian, 2012, Copper as an antimicrobial agent against opportunistic pathogenic and multidrug resistant Enterobacter bacteria, J. Microbiol., 50, 586, 10.1007/s12275-012-2067-8 Noyce, 2006, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect., 63, 289, 10.1016/j.jhin.2005.12.008 Steindl, 2012, Antimicrobial effect of copper on multidrug-resistant bacteria, Wien. Tierarztl. Monat., 99, 38 Santo, 2011, Bacterial killing by dry metallic copper surfaces, Appl. Environ. Microbiol., 77, 794, 10.1128/AEM.01599-10 Warnes, 2010, Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs, Appl. Environ. Microbiol., 76, 5390, 10.1128/AEM.03050-09 Cioffi, 2005, Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties, Chem. Mater., 17, 5255, 10.1021/cm0505244 Gouda, 2010, Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric, J. Ind. Text., 39, 203, 10.1177/1528083709103142 Cady, 2011, Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro, Adv. Eng. Mater., 21, 2506 Gunawan, 2011, Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts, ACS Nano, 5, 7214, 10.1021/nn2020248 Maniprasad, 2012, Novel copper (Cu) loaded core–shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties, J. Biomed. Nanotechnol., 8, 558, 10.1166/jbn.2012.1423 R.R.V.a.J.B. A, 2011, Nanoparticles and their potential application as antimicrobials, 1, 13 Seil, 2012, Antibacterial effect of zinc oxide nanoparticles combined with ultrasound, Nanotechnology, 23, 495101, 10.1088/0957-4484/23/49/495101 Pramanik, 2012, A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage, Colloids Surf. B: Biointerfaces, 96, 50, 10.1016/j.colsurfb.2012.03.021 Renz, 1921, Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren, Helv. Chim. Acta, 4, 961, 10.1002/hlca.192100401101 Chong, 2010, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44, 2997, 10.1016/j.watres.2010.02.039 Chorianopoulos, 2011, Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiol., 28, 164, 10.1016/j.fm.2010.07.025 Li, 2005, Visible-light-driven N–F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification, Chem. Mater., 17, 2596, 10.1021/cm049099p Cermenati, 1997, Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-Fenton generated OH radicals and superoxide dismutase, J. Phys. Chem. B, 101, 2650, 10.1021/jp962700p Fu, 2005, Anatase TiO2 nanocomposites for antimicrobial coatings, J. Phys. Chem. B, 109, 8889, 10.1021/jp0502196 Li, 2008, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42, 4591, 10.1016/j.watres.2008.08.015 Dastjerdi, 2010, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloids Surf. B: Biointerfaces, 79, 5, 10.1016/j.colsurfb.2010.03.029 Miyagi, 2004, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity, Chem. Phys. Lett., 390, 399, 10.1016/j.cplett.2004.04.042 Shah, 2008, The antibacterial effects of biphasic brookite–anatase titanium dioxide nanoparticles on multiple-drug-resistant Staphylococcus aureus, J. Biomed. Nanotechnol., 4, 339, 10.1166/jbn.2008.324 Daoud, 2005, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities, Surf. Sci., 599, 69, 10.1016/j.susc.2005.09.038 Hajkova, 2007, Photocatalytic effect of TiO2 films on viruses and bacteria, Plasma Process. Polym., 4, S397, 10.1002/ppap.200731007 Mahmoodi, 2006, Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor, J. Colloid Interface Sci., 295, 159, 10.1016/j.jcis.2005.08.007 Sheel, 2008, Biocidal silver and silver/titania composite films grown by chemical vapour deposition, Int. J. Photoenergy, 2008, 10.1155/2008/168185 Erkan, 2006, Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films, J. Photochem. Photobiol. A Chem., 184, 313, 10.1016/j.jphotochem.2006.05.001 Pal, 2007, Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light, J. Photochem. Photobiol. A Chem., 186, 335, 10.1016/j.jphotochem.2006.09.002 Matsunaga, 1988, Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 54, 1330, 10.1128/AEM.54.6.1330-1333.1988 Saito, 1992, Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci, J. Photochem. Photobiol. B, 14, 369, 10.1016/1011-1344(92)85115-B Amézaga-Madrid, 2003, TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films, J. Photochem. Photobiol. B Biol., 70, 45, 10.1016/S1011-1344(03)00054-X Amézaga-Madrid, 2002, Photoinduced bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films, FEMS Microbiol. Rev., 211, 183, 10.1016/S0378-1097(02)00686-9 Hu, 2007, Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation, Langmuir, 23, 4982, 10.1021/la063626x Liou, 2012, Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria, Arch. Immunol. Ther. Exp., 60, 267, 10.1007/s00005-012-0178-x Wei, 1994, Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system, Environ. Toxicol. Chem., 28, 934 Ciston, 2009, Controlling biofilm growth using reactive ceramic ultrafiltration membranes, J. Membr. Sci., 342, 263, 10.1016/j.memsci.2009.06.049 Dhandapani, 2012, Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm, J. Photochem. Photobiol. B, 110, 43, 10.1016/j.jphotobiol.2012.03.003 Simon-Deckers, 2009, Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Toxicol. Chem., 43, 8423 Szabó, 2003, Zinc oxide nanoparticles incorporated in ultrathin layer silicate films and their photocatalytic properties, Colloids Surf. A Physicochem. Eng. Asp., 230, 23, 10.1016/j.colsurfa.2003.09.010 Yamamoto, 2000, Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution, Int. J. Inorg. Mater., 2, 451, 10.1016/S1466-6049(00)00045-3 Ansari, 2012, Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India, Appl. Microbiol. Biotechnol., 94, 467, 10.1007/s00253-011-3733-1 Brayner, 2006, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6, 866, 10.1021/nl052326h Sharma, 2010, Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties, Thin Solid Films, 519, 1224, 10.1016/j.tsf.2010.08.073 Ikawa, 2010, Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application, Plasma Process. Polym., 7, 33, 10.1002/ppap.200900090 Jones, 2008, Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, FEMS Microbiol. Rev., 279, 71, 10.1111/j.1574-6968.2007.01012.x Sawai, 2004, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay, J. Appl. Microbiol., 96, 803, 10.1111/j.1365-2672.2004.02234.x Padmavathy, 2008, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 9, 1, 10.1088/1468-6996/9/3/035004 Koper, 1997, Alkaline-Earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities, Chem. Mater., 9, 2468, 10.1021/cm970357a Koper, 2002, Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins, Curr. Microbiol., 44, 49, 10.1007/s00284-001-0073-x Sawai, 2000, Antibacterial characteristics of magnesium oxide powder, World J. Microbiol. Biotechnol., 16, 187, 10.1023/A:1008916209784 Blecher, 2011, The growing role of nanotechnology in combating infectious disease, Virulence, 2, 395, 10.4161/viru.2.5.17035 Awaya, 1997, Self-aligned passivation technology for copper interconnection using copper–aluminum alloy, Jpn. J. Appl. Phys., 36, 112, 10.1143/JJAP.36.1548 Li, 2004, Bacterial adhesion to glass and metal-oxide surfaces, Colloids Surf. B: Biointerfaces, 36, 81, 10.1016/j.colsurfb.2004.05.006 Mukherjee, 2011, Microbial activity of aluminium oxide nanoparticles for potential clinical applications, 245 Mishra, 2008, Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patients, Dig. J. Nanomater. Biostruct., 3, 159 Sadiq, 2011, Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications, 1, 245 Sadiq, 2009, Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles, Nanomedicine Nanotechnol. Biol. Med., 5, 282, 10.1016/j.nano.2009.01.002 Qiu, 2012, Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera, Proc. Natl. Acad. Sci. U. S. A., 109, 4944, 10.1073/pnas.1107254109 Xu, 2012, Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7, Biometals, 25, 45, 10.1007/s10534-011-9482-x Chopra, 2007, The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?, J. Antimicrob. Chemother., 59, 587, 10.1093/jac/dkm006 Subbiahdoss, 2012, Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci, Acta Biomater., 8, 2047, 10.1016/j.actbio.2012.03.002 Gokulakrishnan, 2012, In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens, Asian Pac. J. Trop. Dis., 2, 411, 10.1016/S2222-1808(12)60089-9 Hernandez-Delgadillo, 2012, Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm, Int. J. Nanomedicine, 7, 2109 Syed, 2010, Antibacterial effects of tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus, New Microbiol., 33, 329 Roy, 2013, Antimicrobial activity of CaO nanoparticles, J. Biomed. Nanotechnol., 9, 1570, 10.1166/jbn.2013.1681 Wu, 2010, Bacterial responses to Cu-doped TiO2 nanoparticles, Sci. Total Environ., 408, 1755, 10.1016/j.scitotenv.2009.11.004 Fröhlich, 2012, Models for oral uptake of nanoparticles in consumer products, Toxicology, 291, 10, 10.1016/j.tox.2011.11.004 Brunner, 2006, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility, Environ. Toxicol. Chem., 40, 4374 Hamilton, 2009, Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity, Part. Fibre Toxicol., 6, 35, 10.1186/1743-8977-6-35 Chen, 2009, Assessment of the in vivo toxicity of gold nanoparticles, Nanoscale Res. Lett., 4, 858, 10.1007/s11671-009-9334-6 Choi, 2007, Renal clearance of quantum dots, Nat. Biotechnol., 25, 1165, 10.1038/nbt1340 Schrurs, 2012, Focusing the research efforts, Nat. Nanotechnol., 7, 546, 10.1038/nnano.2012.148 2012, Join the dialogue, Nat. Nanotechnol., 7, 545, 10.1038/nnano.2012.150 Adhikari, 2013, Membrane-directed high bactericidal activity of (gold nanoparticle)–polythiophene composite for niche applications against pathogenic bacteria, Adv. Healthc. Mater., 2, 10.1002/adhm.201200278 Shrivastava, 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18, 225103, 10.1088/0957-4484/18/22/225103 Panáček, 2006, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, 110, 16248, 10.1021/jp063826h Jain, 2010, Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis, Indian J. Exp. Biol., 48, 1152 Nanda, 2009, Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE, Nanomedicine Nanotechnol. Biol. Med., 5, 452, 10.1016/j.nano.2009.01.012 Saravanan, 2010, Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE, Colloids Surf. B: Biointerfaces, 77, 214, 10.1016/j.colsurfb.2010.01.026 Otari, 2013, A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity, Dalton Trans., 42, 9966, 10.1039/c3dt51093j Doudi, 2013, Comparison of the effects of silver nanoparticles on pathogenic bacteria resistant to beta-lactam antibiotics (ESBLs) as a prokaryote model and Wistar rats as a eukaryote model, Med. Sci. Monit. Basic Res., 19, 103, 10.12659/MSMBR.883835 Ansari, 2011, Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections, Biol. Med., 3, 141 Eid, 2013, Bactericidal effect of poly(acrylamide/itaconic acid)–silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa, Appl. Biochem. Biotechnol., 171, 469, 10.1007/s12010-013-0357-1 Jena, 2012, Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells, Int. J. Nanomedicine, 7, 1805 Sambhy, 2006, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials, J. Am. Chem. Soc., 128, 9798, 10.1021/ja061442z Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004 Lellouche, 2009, Antibiofilm activity of nanosized magnesium fluoride, Biomaterials, 30, 5969, 10.1016/j.biomaterials.2009.07.037 Taylor, 2012, Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms, Small, 8, 3016, 10.1002/smll.201200575 Mahmoudi, 2012, Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat, ACS Nano, 6, 2656, 10.1021/nn300042m Kunkalekar, 2013, Antibacterial activity of silver-doped manganese dioxide nanoparticles on multidrug-resistant bacteria, J. Chem. Technol. Biotechnol., 88, 873, 10.1002/jctb.3915 Hillyer, 2001, Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles, J. Pharm. Sci., 90, 1927, 10.1002/jps.1143 Zhang, 2010, Toxicologic effects of gold nanoparticles in vivo by different administration routes, Int. J. Nanomedicine, 5, 771, 10.2147/IJN.S8428 Zhang, 2011, Size-dependent in vivo toxicity of PEG-coated gold nanoparticles, Int. J. Nanomedicine, 6, 2071, 10.2147/IJN.S21657 Dhar, 2011, Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies, J. Appl. Toxicol., 31, 411, 10.1002/jat.1595 Kim, 2008, Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats, Inhal. Toxicol., 20, 575, 10.1080/08958370701874663 Park, 2010, Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles, Environ. Toxicol. Pharmacol., 30, 162, 10.1016/j.etap.2010.05.004 Chen, 2006, Acute toxicological effects of copper nanoparticles in vivo, Toxicol. Lett., 163, 109, 10.1016/j.toxlet.2005.10.003 Lei, 2008, Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity, Toxicol. Appl. Pharmacol., 232, 292, 10.1016/j.taap.2008.06.026 Duan, 2010, Interaction between nanoparticulate anatase TiO2 and lactate dehydrogenase, Biol. Trace Elem. Res., 136, 302, 10.1007/s12011-009-8548-x Li, 2010, Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticles, Toxicol. Lett., 195, 161, 10.1016/j.toxlet.2010.03.1116 Bu, 2010, NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration, Nanotechnology, 21, 125105, 10.1088/0957-4484/21/12/125105 Chen, 2009, In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection, J. Appl. Toxicol., 29, 330, 10.1002/jat.1414 Wang, 2008, Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice, J. Nanoparticle Res., 10, 263, 10.1007/s11051-007-9245-3 Sayes, 2007, Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles, Toxicol. Sci., 97, 163, 10.1093/toxsci/kfm018