Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions

Trends in Biotechnology - Tập 28 Số 7 - Trang 371-380 - 2010
Amit Kumar1,2,3, Sarina J. Ergas4, Xin Yuan1, Ashish Kumar Sahu5, Qiong Zhang4, Jo Dewulf2, F. Xavier Malcata6,7, Herman Van Langenhove2
1Department of Civil & Environmental Engineering, University of Massachusetts, Amherst CT, USA
2EnVOC Research Group, Faculty of Bioscience Engineering, Ghent University, Belgium
3Pollution Prevention & Control Core, UNESCO-IHE, Delft, The Netherlands
4Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, USA
5Aquateam – Norwegian Water Technology Center AS, Oslo, Norway
6CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas n° 289, P-4050-123 Porto, Portugal
7ISMAI – Instituto Superior da Maia, Avenida Carlos Oliveira Campos, P-4475-690 Avioso S. Pedro, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Intergovernmental Panel on Climate Change – IPCC (2007) Climate Change 2007: Synthesis Report, United Nations

Lackne, 2003, Climate Change: A guide to CO2 sequestration, Science, 300, 1677, 10.1126/science.1079033

Li, 2008, Biofuels from microalgae, Biotech. Prog., 24, 815, 10.1021/bp070371k

Ergas, S.J., et al. (2010) Growth of micro-algae using wastewater for anaerobic co-digestion. 7th IWA Leading-Edge Conference on Water and Wastewater Technologies, June 2–5, Phoenix, AZ

Haiduc, 2009, SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation, J. Appl. Phycol., 21, 529, 10.1007/s10811-009-9403-3

1994

Mallick, 2002, Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals, 15, 377, 10.1023/A:1020238520948

Demirbas, 2004, Current technologies for the thermo-conversion of biomass into fuels and chemicals, Energy Source, 26, 715, 10.1080/00908310490445562

Munoz, 2006, Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Res., 40, 2799, 10.1016/j.watres.2006.06.011

Safonova, 2004, Biotreatment of industrial wastewater by selected algal-bacterial consortia, Eng. Life Sci., 4, 347, 10.1002/elsc.200420039

Guzzon, 2008, Cultured phototrophic biofilms for phosphorus removal in wastewater treatment, Water Res., 42, 4357, 10.1016/j.watres.2008.07.029

Kumar, 2009, Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach, J. Chem. Technol. Biotechnol., 85, 387, 10.1002/jctb.2332

Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702

Carvalho, 2001, Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules, Biotechnol. Prog., 17, 265, 10.1021/bp000157v

Carlsson, 2007

Richmond, 2003, Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the population density and the cell growth inhibition, Biomol. Eng., 20, 229, 10.1016/S1389-0344(03)00060-1

Hanagata, 1992, Tolerance of microalgae to high CO2 and high temperature, Phytochemistry, 31, 3345, 10.1016/0031-9422(92)83682-O

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Tredici, 2010, Photobiology of microalgae mass cultures: understanding the tools for the next green revolution, Biofuels, 1, 143, 10.4155/bfs.09.10

Doucha, 2005, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7

Green, 1996, The chlorophyll-carotenoid proteins of oxygenic photosynthesis, Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, 685, 10.1146/annurev.arplant.47.1.685

Jin, 2006, Influence of nitrate feeding on carbon dioxide fixation by microalgae, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 41, 2813, 10.1080/10934520600967928

Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j

Ono, E. and Cuello, J. L. (2003) Selection of optimal microalgae species for CO2 sequestration. Proceedings of Second Annual Conference on Carbon Sequestration. Alexandria, VA

Tamiya, 1957, Mass culture of algae, Ann. Rev. Plant Physiol., 8, 309, 10.1146/annurev.pp.08.060157.001521

Hu, 1998, Combined effects of light intensity, light path and culture density on output rate of Spirulina platensis (Cyanobacteria), Eur. J. Phycol., 33, 165, 10.1080/09670269810001736663

Kodama, 1993, A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture, J. Marine Biotechnol., 1, 21

Oswald, 1988, Large-scale systems (engineering aspects), 357

Yang, 2003, Effects of CO2 concentrations on the freshwater microalgae Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta), J. Appl. Phycol., 15, 379, 10.1023/A:1026021021774

Yoshihara, 1996, Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor, J. Ferment. Bioeng., 82, 351, 10.1016/0922-338X(96)89149-5

Maeda, 1995, CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae, Energy Convers. Manag., 36, 717, 10.1016/0196-8904(95)00105-M

Matsumoto, 1995, Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler, Appl. Biochem. Biotechnol., 51/52, 681, 10.1007/BF02933469

Carvalho, 2006, Microalgal reactors: a review of enclosed systems design and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r

Lee, 2003, Review of advances in biological CO2 mitigation technology, Biotechnol. Bioprocess Eng., 8, 354, 10.1007/BF02949279

Cheng, 2006, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol., 50, 324, 10.1016/j.seppur.2005.12.006

Chae, 2006, Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor, Biores. Technol., 97, 322, 10.1016/j.biortech.2005.02.037

Nakamura, 2004, Local and chemical distribution of phlorotannins in brown algae, J. Appl. Phycol., 16, 291, 10.1023/B:JAPH.0000047781.24993.0a

Fan, 2007, Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor, Chem. Eng. Technol., 30, 1094, 10.1002/ceat.200700141

Ferreira, 1998, Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures, Chem. Technol. Biotechnol., 71, 61, 10.1002/(SICI)1097-4660(199801)71:1<61::AID-JCTB785>3.0.CO;2-R

Fan, 2008, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Memb. Sci., 325, 336, 10.1016/j.memsci.2008.07.044

Morita, 2000, Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae, Biotechnol. Bioeng., 69, 693, 10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0

Cién-Fernández, 2005, Cost-effective production of 13C, 15N stable isotope-labelled biomass from phototrophic microalgae for various biotechnological applications, Biomol. Eng., 22, 193, 10.1016/j.bioeng.2005.09.002

Jaouen, 1999, The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: the role of pumps, Biores. Technol., 68, 149, 10.1016/S0960-8524(98)00144-8

Tredici, M. R. (2003) Closed photobioreactors: basic and applied aspects. In Proceedings of Marine Biotechnology: Basics and Applications, p. 1, Matalascañas, Spain

Richmond, 2001, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors, J. Biotechnol., 85, 259, 10.1016/S0168-1656(00)00353-9

Barbosa, 2003, Hydrodynamic stress and lethal events in sparged microalgae culture, Biotechnol. Bioeng., 83, 112, 10.1002/bit.10657

Yamaguchi, 1996, Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review, J. Appl. Phycol., 8, 487, 10.1007/BF02186327

Suh, 2003, A light distribution model for an internally radiating photobioreactor, Biotechnol. Bioeng., 82, 180, 10.1002/bit.10558

Laws, 1987, Continued studies of high algal productivities in a shallow flume, Biomass, 11, 39, 10.1016/0144-4565(86)90019-3

Cuello, J.L., et al. (2008) Hybrid solar and electric lighting (HYSEL) for space light support. Presentation at Carbon Recycling Forum 2008, Arizona

Muhs, J. (2000) Design and analysis of hybrid solar lighting and full-spectrum solar energy systems. Proceedings of the International Solar Energy Conference, Solar Engineering, pp. 229–237

Lehr, 2009, Closed photo-bioreactors as tools for biofuel production, Curr. Opin. Biotechnol., 20, 280, 10.1016/j.copbio.2009.04.004

Meireles, 2002, On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnol. Prog., 18, 1387, 10.1021/bp020283u

Sandnes, 2006, Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors, J. Biotechnol., 122, 209, 10.1016/j.jbiotec.2005.08.034

Yang, 2006, Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton, Hydrobiologia, 563, 225, 10.1007/s10750-005-0008-9

Muhs, J., et al. (2009) A Summary of Opportunities, Challenges, and Research Needs – Algae Biofuels & Carbon Recycling. Report from Utah State University. (www.utah.gov/ustar/documents/63.pdf)

Aresta, 2005, Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study, Fuel Proc. Technol., 86, 1679, 10.1016/j.fuproc.2005.01.016

Pulz, 2004, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, 635, 10.1007/s00253-004-1647-x

Liang, 2004, Current microalgal health food R & D activities in China, Hydrobiologia, 512, 45, 10.1023/B:HYDR.0000020366.65760.98

Riley, 2002, Effects of algal fibre and perlite on physical properties of various soils and on potato nutrition and quality on a gravelly loamsoil in southern Norway, Acta Agric. Scandin. B - Plant Soil Sci., 52, 86

Ördög, 2004, Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites, J. Appl. Phycol., 16, 309, 10.1023/B:JAPH.0000047789.34883.aa

Scholz, 2006, Chemical screening for bioactive substances in culture media of microalgae and cyanobacteria from marine and brackish water habitats: first results, Pharm. Biol., 44, 544, 10.1080/13880200600883114

Chisti, 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002

Liu, 2009, The analysis on energy and environmental impacts of microalgae-based fuel methanol in China, Energy Policy, 37, 1479, 10.1016/j.enpol.2008.12.010

Campbell, P.K., et al. (2009) Greenhouse gas sequestration by algae – energy and greenhouse gas life cycle studies. CSIRO. (http://www.csiro.au/resources/Greenhouse-Sequestration-Algae.html)

Kadam, K. (2001) Microalgae production from power plant flue gas: environmental implications on a life cycle basis. Technical Report. National Renewable Energy Laboratory

Gross, 2001, Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data, Eur. J. Phycol., 36, 275, 10.1080/09670260110001735428

Patil, 2008, Towards sustainable production of biofuels from microalgae, Int. J. Mol. Sci., 9, 1188, 10.3390/ijms9071188

Groom, 2008, Biofuels and biodiversity: principles for creating better policies for biofuel production, Conserv. Biol., 22, 602, 10.1111/j.1523-1739.2007.00879.x

Reijnders, 2009, Acute view transport biofuels: can they help limiting climate change without an upward impact on food prices?, J. Verbr. Lebensm., 4, 75, 10.1007/s00003-009-0386-4

Miller, 2007, Environmental trade-offs of biobased production, Environ. Sci. Technol., 41, 5176, 10.1021/es072581z

Stucki, 2009, Catalytic gasification of algae in supercritical water for biofuel production and carbon capture, Energy Environ. Sci., 2, 535, 10.1039/b819874h