Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Intergovernmental Panel on Climate Change – IPCC (2007) Climate Change 2007: Synthesis Report, United Nations
Lackne, 2003, Climate Change: A guide to CO2 sequestration, Science, 300, 1677, 10.1126/science.1079033
Ergas, S.J., et al. (2010) Growth of micro-algae using wastewater for anaerobic co-digestion. 7th IWA Leading-Edge Conference on Water and Wastewater Technologies, June 2–5, Phoenix, AZ
Haiduc, 2009, SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation, J. Appl. Phycol., 21, 529, 10.1007/s10811-009-9403-3
1994
Mallick, 2002, Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals, 15, 377, 10.1023/A:1020238520948
Demirbas, 2004, Current technologies for the thermo-conversion of biomass into fuels and chemicals, Energy Source, 26, 715, 10.1080/00908310490445562
Munoz, 2006, Algal-bacterial processes for the treatment of hazardous contaminants: a review, Water Res., 40, 2799, 10.1016/j.watres.2006.06.011
Safonova, 2004, Biotreatment of industrial wastewater by selected algal-bacterial consortia, Eng. Life Sci., 4, 347, 10.1002/elsc.200420039
Guzzon, 2008, Cultured phototrophic biofilms for phosphorus removal in wastewater treatment, Water Res., 42, 4357, 10.1016/j.watres.2008.07.029
Kumar, 2009, Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach, J. Chem. Technol. Biotechnol., 85, 387, 10.1002/jctb.2332
Pulz, 2001, Photobioreactors: production systems for phototrophic microorganisms, Appl. Microbiol. Biotechnol., 57, 287, 10.1007/s002530100702
Carvalho, 2001, Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules, Biotechnol. Prog., 17, 265, 10.1021/bp000157v
Carlsson, 2007
Richmond, 2003, Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the population density and the cell growth inhibition, Biomol. Eng., 20, 229, 10.1016/S1389-0344(03)00060-1
Hanagata, 1992, Tolerance of microalgae to high CO2 and high temperature, Phytochemistry, 31, 3345, 10.1016/0031-9422(92)83682-O
Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001
Tredici, 2010, Photobiology of microalgae mass cultures: understanding the tools for the next green revolution, Biofuels, 1, 143, 10.4155/bfs.09.10
Doucha, 2005, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7
Green, 1996, The chlorophyll-carotenoid proteins of oxygenic photosynthesis, Ann. Rev. Plant Physiol. Plant Mol. Biol., 47, 685, 10.1146/annurev.arplant.47.1.685
Jin, 2006, Influence of nitrate feeding on carbon dioxide fixation by microalgae, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 41, 2813, 10.1080/10934520600967928
Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j
Ono, E. and Cuello, J. L. (2003) Selection of optimal microalgae species for CO2 sequestration. Proceedings of Second Annual Conference on Carbon Sequestration. Alexandria, VA
Tamiya, 1957, Mass culture of algae, Ann. Rev. Plant Physiol., 8, 309, 10.1146/annurev.pp.08.060157.001521
Hu, 1998, Combined effects of light intensity, light path and culture density on output rate of Spirulina platensis (Cyanobacteria), Eur. J. Phycol., 33, 165, 10.1080/09670269810001736663
Kodama, 1993, A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture, J. Marine Biotechnol., 1, 21
Oswald, 1988, Large-scale systems (engineering aspects), 357
Yang, 2003, Effects of CO2 concentrations on the freshwater microalgae Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta), J. Appl. Phycol., 15, 379, 10.1023/A:1026021021774
Yoshihara, 1996, Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor, J. Ferment. Bioeng., 82, 351, 10.1016/0922-338X(96)89149-5
Maeda, 1995, CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae, Energy Convers. Manag., 36, 717, 10.1016/0196-8904(95)00105-M
Matsumoto, 1995, Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler, Appl. Biochem. Biotechnol., 51/52, 681, 10.1007/BF02933469
Carvalho, 2006, Microalgal reactors: a review of enclosed systems design and performances, Biotechnol. Prog., 22, 1490, 10.1002/bp060065r
Lee, 2003, Review of advances in biological CO2 mitigation technology, Biotechnol. Bioprocess Eng., 8, 354, 10.1007/BF02949279
Cheng, 2006, Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Sep. Purif. Technol., 50, 324, 10.1016/j.seppur.2005.12.006
Chae, 2006, Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor, Biores. Technol., 97, 322, 10.1016/j.biortech.2005.02.037
Nakamura, 2004, Local and chemical distribution of phlorotannins in brown algae, J. Appl. Phycol., 16, 291, 10.1023/B:JAPH.0000047781.24993.0a
Fan, 2007, Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor, Chem. Eng. Technol., 30, 1094, 10.1002/ceat.200700141
Ferreira, 1998, Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures, Chem. Technol. Biotechnol., 71, 61, 10.1002/(SICI)1097-4660(199801)71:1<61::AID-JCTB785>3.0.CO;2-R
Fan, 2008, Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris, J. Memb. Sci., 325, 336, 10.1016/j.memsci.2008.07.044
Morita, 2000, Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae, Biotechnol. Bioeng., 69, 693, 10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
Cién-Fernández, 2005, Cost-effective production of 13C, 15N stable isotope-labelled biomass from phototrophic microalgae for various biotechnological applications, Biomol. Eng., 22, 193, 10.1016/j.bioeng.2005.09.002
Jaouen, 1999, The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: the role of pumps, Biores. Technol., 68, 149, 10.1016/S0960-8524(98)00144-8
Tredici, M. R. (2003) Closed photobioreactors: basic and applied aspects. In Proceedings of Marine Biotechnology: Basics and Applications, p. 1, Matalascañas, Spain
Richmond, 2001, Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors, J. Biotechnol., 85, 259, 10.1016/S0168-1656(00)00353-9
Barbosa, 2003, Hydrodynamic stress and lethal events in sparged microalgae culture, Biotechnol. Bioeng., 83, 112, 10.1002/bit.10657
Yamaguchi, 1996, Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review, J. Appl. Phycol., 8, 487, 10.1007/BF02186327
Suh, 2003, A light distribution model for an internally radiating photobioreactor, Biotechnol. Bioeng., 82, 180, 10.1002/bit.10558
Laws, 1987, Continued studies of high algal productivities in a shallow flume, Biomass, 11, 39, 10.1016/0144-4565(86)90019-3
Cuello, J.L., et al. (2008) Hybrid solar and electric lighting (HYSEL) for space light support. Presentation at Carbon Recycling Forum 2008, Arizona
Muhs, J. (2000) Design and analysis of hybrid solar lighting and full-spectrum solar energy systems. Proceedings of the International Solar Energy Conference, Solar Engineering, pp. 229–237
Lehr, 2009, Closed photo-bioreactors as tools for biofuel production, Curr. Opin. Biotechnol., 20, 280, 10.1016/j.copbio.2009.04.004
Meireles, 2002, On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnol. Prog., 18, 1387, 10.1021/bp020283u
Sandnes, 2006, Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors, J. Biotechnol., 122, 209, 10.1016/j.jbiotec.2005.08.034
Yang, 2006, Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton, Hydrobiologia, 563, 225, 10.1007/s10750-005-0008-9
Muhs, J., et al. (2009) A Summary of Opportunities, Challenges, and Research Needs – Algae Biofuels & Carbon Recycling. Report from Utah State University. (www.utah.gov/ustar/documents/63.pdf)
Aresta, 2005, Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study, Fuel Proc. Technol., 86, 1679, 10.1016/j.fuproc.2005.01.016
Pulz, 2004, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol., 65, 635, 10.1007/s00253-004-1647-x
Liang, 2004, Current microalgal health food R & D activities in China, Hydrobiologia, 512, 45, 10.1023/B:HYDR.0000020366.65760.98
Riley, 2002, Effects of algal fibre and perlite on physical properties of various soils and on potato nutrition and quality on a gravelly loamsoil in southern Norway, Acta Agric. Scandin. B - Plant Soil Sci., 52, 86
Ördög, 2004, Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites, J. Appl. Phycol., 16, 309, 10.1023/B:JAPH.0000047789.34883.aa
Scholz, 2006, Chemical screening for bioactive substances in culture media of microalgae and cyanobacteria from marine and brackish water habitats: first results, Pharm. Biol., 44, 544, 10.1080/13880200600883114
Chisti, 2008, Biodiesel from microalgae beats bioethanol, Trends Biotechnol., 26, 126, 10.1016/j.tibtech.2007.12.002
Liu, 2009, The analysis on energy and environmental impacts of microalgae-based fuel methanol in China, Energy Policy, 37, 1479, 10.1016/j.enpol.2008.12.010
Campbell, P.K., et al. (2009) Greenhouse gas sequestration by algae – energy and greenhouse gas life cycle studies. CSIRO. (http://www.csiro.au/resources/Greenhouse-Sequestration-Algae.html)
Kadam, K. (2001) Microalgae production from power plant flue gas: environmental implications on a life cycle basis. Technical Report. National Renewable Energy Laboratory
Gross, 2001, Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data, Eur. J. Phycol., 36, 275, 10.1080/09670260110001735428
Patil, 2008, Towards sustainable production of biofuels from microalgae, Int. J. Mol. Sci., 9, 1188, 10.3390/ijms9071188
Groom, 2008, Biofuels and biodiversity: principles for creating better policies for biofuel production, Conserv. Biol., 22, 602, 10.1111/j.1523-1739.2007.00879.x
Reijnders, 2009, Acute view transport biofuels: can they help limiting climate change without an upward impact on food prices?, J. Verbr. Lebensm., 4, 75, 10.1007/s00003-009-0386-4
Miller, 2007, Environmental trade-offs of biobased production, Environ. Sci. Technol., 41, 5176, 10.1021/es072581z