Heterostructured CoP·CoMoP nanocages as advanced electrocatalysts for efficient hydrogen evolution over a wide pH range
Tài liệu tham khảo
Hughes, 2021, Renew. Sustain. Energy Rev., 139, 110709, 10.1016/j.rser.2021.110709
Tang, 2016, Adv. Mater., 29, 1602441, 10.1002/adma.201602441
Xing, 2021, Int. J. Hydrogen Energy, 46, 7989, 10.1016/j.ijhydene.2020.12.037
Xu, 2018, Adv. Mater., 30, 1703322, 10.1002/adma.201703322
Tang, 2021, Chem. Eng. J., 404, 126529, 10.1016/j.cej.2020.126529
Zang, 2021, Mater. Interfaces, 13, 9865, 10.1021/acsami.0c20820
Sun, 2020, Adv. Mater., 32, 1806326, 10.1002/adma.201806326
Zhang, 2018, Nano Energy, 45, 448, 10.1016/j.nanoen.2018.01.022
Dong, 2021, Chem. Eng. J., 412, 128556, 10.1016/j.cej.2021.128556
Zhang, 2015, Lett., 15, 7616
Han, 2018, Nat. Commun., 9, 924, 10.1038/s41467-018-03429-z
Chen, 2021, J. Alloys Compd., 883, 160833, 10.1016/j.jallcom.2021.160833
Guo, 2019, Adv. Mater., 31, 1807134, 10.1002/adma.201807134
Zhu, 2020, Energy Environ. Sci., 13, 3361, 10.1039/D0EE02485F
El-Refaei, 2021, Mater. Interfaces, 13, 22077, 10.1021/acsami.1c02129
Zhang, 2021, Green Energy Environ., 6, 458, 10.1016/j.gee.2020.10.013
Li, 2021, Chem. Eng. J., 405, 126981, 10.1016/j.cej.2020.126981
Feng, 2020, ChemElectroChem, 7, 31, 10.1002/celc.201901623
Li, 2021, Langmuir, 37, 5986, 10.1021/acs.langmuir.1c00524
Zheng, 2018, Angew. Chem., Int. Ed., 57, 7568, 10.1002/anie.201710556
Zhu, 2020, Chem. Commun., 56, 7159, 10.1039/D0CC02246B
Tian, 2019, Adv. Mater., 31, 1808066, 10.1002/adma.201808066
Zang, 2018, ACS Catal., 8, 5062, 10.1021/acscatal.8b00949
Liu, 2017, ACS Catal., 7, 98, 10.1021/acscatal.6b02849
Wu, 2020, ACS Sustain. Chem. Eng., 8, 14825, 10.1021/acssuschemeng.0c04322
Liu, 2019, Angew. Chem., Int. Ed., 58, 4679, 10.1002/anie.201901409
Boppella, 2019, Adv. Funct. Mater., 29, 1807976, 10.1002/adfm.201807976
Wang, 2019, ACS Sustain. Chem. Eng., 7, 10044, 10.1021/acssuschemeng.9b01315
Hirata, 2016, Energy Environ. Sci., 9, 2257, 10.1039/C6EE01109H
Chen, 2018, Nano Energy, 56, 225, 10.1016/j.nanoen.2018.11.051
Liu, 2019, Mater. Interfaces, 11, 42233, 10.1021/acsami.9b15194
Guan, 2018, Nano Energy, 48, 73, 10.1016/j.nanoen.2018.03.034
Wang, 2017, Electrochim. Acta, 225, 503, 10.1016/j.electacta.2016.12.162
Yu, 2018, Nano Energy, 53, 492, 10.1016/j.nanoen.2018.08.025
Lyu, 2017, Adv. Funct. Mater., 27, 1702324, 10.1002/adfm.201702324
Niu, 2018, J. Mater. Chem. A, 6, 12056, 10.1039/C8TA03591A
Guo, 2017, Chem. Mater., 29, 5566, 10.1021/acs.chemmater.7b00867
Lin, 2017, Electrochim. Acta, 247, 258, 10.1016/j.electacta.2017.06.179
Guo, 2018, Small Methods, 2, 1800204, 10.1002/smtd.201800204
Hou, 2019, Carbon, 144, 492, 10.1016/j.carbon.2018.12.053
Zhang, 2018, ACS Appl. Mater. Interfaces, 10, 9765, 10.1021/acsami.7b17669
Kresse, 1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Blöchl, 1994, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Ma, 2017, Energy Environ. Sci., 10, 788, 10.1039/C6EE03768B
Liu, 2013, Mater. Lett., 94, 197, 10.1016/j.matlet.2012.12.057
Xiong, 2018, Int. J. Hydrogen Energy, 43, 20372, 10.1016/j.ijhydene.2018.09.117
Yao, 2014, ACS Appl. Mater. Interfaces, 6, 20414, 10.1021/am505983m
Zhang, 2014, Angew. Chem., Int. Ed., 126, 12517, 10.1002/anie.201406484
Zou, 2020, Angew. Chem., Int. Ed., 59, 19627, 10.1002/anie.202004737
Peng, 2017, Angew. Chem., 56, 1751, 10.1002/anie.201609565
Xu, 2016, Chem. Mater., 28, 6313, 10.1021/acs.chemmater.6b02586
Xu, 2020, J. Colloid Interface Sci., 577, 379, 10.1016/j.jcis.2020.05.097
Tang, 2017, ACS Appl. Mater. Interfaces, 9, 41347, 10.1021/acsami.7b14466
Chang, 2021, J. Mater. Chem. A, 9, 17876, 10.1039/D1TA03854K
Wang, 2017, Electochimi. Acta, 235, 422, 10.1016/j.electacta.2017.02.093