Group Riesz and frame sequences: the Bracket and the Gramian

Collectanea Mathematica - Tập 69 - Trang 221-236 - 2017
Davide Barbieri1, Eugenio Hernández1, Victoria Paternostro2
1Universidad Autónoma de Madrid, Madrid, Spain
2Universidad de Buenos Aires and IMAS-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina

Tóm tắt

Given a discrete group and a unitary representation on a Hilbert space $$\mathcal {H}$$ , we prove that the notions of operator Bracket map and Gramian coincide on a dense set of $$\mathcal {H}$$ . As a consequence, combining this result with known frame theory, we can recover all previous Bracket characterizations of Riesz and frame sequences generated by a single element under a unitary representation.

Tài liệu tham khảo

Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39, 369–399 (2014) Barbieri, D., Hernández, E., Paternostro, V.: The Zak transform and the structure of spaces invariant by the action of an LCA group. J. Funct. Anal. 269, 1327–1358 (2015) Benedetto, J.J., Li, S.: Multiresolution analysis frames with applications. In: ICASSP’93, Minneapolis, vol. III, pp. 304–307 (1993) Benedetto, J.J., Walnut, D.F.: Gabor frames for \(L^2\) and related spaces. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, Chapter 3. CRC Press, Boca Raton (1994) Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998) Bownik, M.: The structure of shift-invariant subspaces of \(L^2(R^n)\). J. Funct. Anal. 177(2), 282–309 (2000) Christensen, O.: An introduction to frames and Riesz bases. Birkhäuser, Basel (2003) Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994) Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, Berlin (1990) Conway, J.B.: A Course in Operator Theory. AMS, Providence (2000) Daubechies, I.: Ten Lectures on Wavelets. SIAM, New Delhi (1992) de Boor, C., DeVore, R.A., Ron, A.: Approximation from shift invariant subspaces of \(L^2(\mathbb{R}^d)\). Trans. Am. Math. Soc. 341, 787–806 (1994) de Boor, C., DeVore, R.A., Ron, A.: The structure of finitely generated shift-invariant spaces in \(L^2(\mathbb{R}^d)\). J. Funct. Anal. 119, 37–78 (1994) Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995) Halmos, P.R.: Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity. Chelsea Publishing Company, London (1951) Heil, C.E., Powell, A.M.: Gabor Schauder bases and the Balian–Low theorem. J. Math. Phys. 47(113506), 1–21 (2006) Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996) Hernández, E., Šikić, H., Weiss, G., Wilson, E.: Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform. Colloq. Math. 118, 313–332 (2010) Junge, M., Mei, T., Parcet, J.: Smooth Fourier multipliers on group von Neumann algebras. Geom. Funct. Anal. 24, 1913–1980 (2014) Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 1 and 2. Academic Press, Cambridge (1983) Kubrusly, C.S.: The Elements of Operator Theory, 2nd edn. Birkhäuser, Basel (2011) Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992) Nelson, E.: Notes on non-commutative integration. J. Funct. Anal. 15, 103–116 (1974) Pisier, G., Xu, Q.: Non-Commutative \(L^p\) spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, Chapter 34, vol. 2. Elsevier, Amsterdam (2003) Rudin, W.: Functional Analysis. McGraw-Hill Book Company, New York City (1973) Takesaki, M.: Theory of Operator Algebras, vol. 1 and 2. Springer, Berlin (2003) Terp, M.: \(L^p\)-spaces associated with von Neumann Algebras. Copenhagen University, Copenhagen (1981)