Generalized polynomials and associated operational identities
Tài liệu tham khảo
L.C. Andrews, Special Functions for engineers and Applied Matematicians, MacMillan, New York, 1985.
P. Appell, J. Kampé-de Fériet, Fonctions Hypergéométriques et Hypersphériques, polynomes d'Hermite, Gautier-Villars, Paris, 1926.
G. Dattoli, A.M. Mancho, A. Torre, The generalized Laguerre polynomials, the associated Bessel functions and application to propagation problems, to be published in Rad. Phys. Chem.
G. Dattoli, P.L. Ottaviani, A. Torre, L. Vazquez, Evolution operator equations: Integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, La Rivista del Nuovo Cimento 20 (1997) 2.
G. Dattoli, A. Torre, Theory and Application of Generalized Bessel Functions, ARACNE, Rome, 1996.
G. Dattoli, A. Torre, Operational methods and two variable laguerre polynomials, Atti Rendiconti Acc. Torino, 132 (1998) 1–7.
G. Dattoli, A. Torre, A.M. Mancho, Exponential operators, generalized polynomials and evolution problems, submitted for publication.
H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood, New York, 1984.
See e.g. A. Wrülich, Beam life-time in Storage Rings, CERN Accelerator School, 1992.