Generalized polynomials and associated operational identities

Journal of Computational and Applied Mathematics - Tập 108 - Trang 209-218 - 1999
G. Dattoli1, S. Lorenzutta2, A.M. Mancho3, A. Torre1
1ENEA, Dipartimento Innovazione, Divisione Fisica Applicata, Centro Ricerche Frascati, C.P. 65, 00044 Frascati, Rome, Italy
2ENEA, Dip. Innovazione, Centro Ricerche, Bologna, Italy
3Department of Physics and Applied Mathematics, University of Navarra, 31080 Pamplona, Spain

Tài liệu tham khảo

L.C. Andrews, Special Functions for engineers and Applied Matematicians, MacMillan, New York, 1985. P. Appell, J. Kampé-de Fériet, Fonctions Hypergéométriques et Hypersphériques, polynomes d'Hermite, Gautier-Villars, Paris, 1926. G. Dattoli, A.M. Mancho, A. Torre, The generalized Laguerre polynomials, the associated Bessel functions and application to propagation problems, to be published in Rad. Phys. Chem. G. Dattoli, P.L. Ottaviani, A. Torre, L. Vazquez, Evolution operator equations: Integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory, La Rivista del Nuovo Cimento 20 (1997) 2. G. Dattoli, A. Torre, Theory and Application of Generalized Bessel Functions, ARACNE, Rome, 1996. G. Dattoli, A. Torre, Operational methods and two variable laguerre polynomials, Atti Rendiconti Acc. Torino, 132 (1998) 1–7. G. Dattoli, A. Torre, A.M. Mancho, Exponential operators, generalized polynomials and evolution problems, submitted for publication. H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood, New York, 1984. See e.g. A. Wrülich, Beam life-time in Storage Rings, CERN Accelerator School, 1992.