Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W. W. Smith

Springer Science and Business Media LLC - Tập 40 - Trang 1-10 - 2018
Izabela Weremczuk-Jeżyna1, Łukasz Kuźma1, Anna K. Kiss2, Izabela Grzegorczyk-Karolak1
1Departament of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
2Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland

Tóm tắt

The current study estimates the effect of different cytokinins on shoot proliferation and biosynthesis of caffeic acid derivatives in Dracocephalum forrestii in vitro culture. The shoots were grown on Murashige and Skoog (MS) agar medium with 1 µM indole-3-acetic acid (IAA) and different content of 6-benzyloaminopurine (BAP), zeatin, kinetin (1, 2, 4, 8, 18 µM) or thidiazuron (TDZ) (0.1, 0.2, 0.5, 1, 2 µM). The highest multiplication rate (about seven shoots and/or buds per explant) was obtained after 4 weeks of culture on MS medium with 1 µM IAA and 8 or 16 µM BAP. Optimal biomass of plant material was also received on the same media. The identity of the compounds present in the hydromethanolic extracts from D. forrestii shoots grown on cytokinin-supplemented media was confirmed using UPLC–PDA–ESI–MS method. The analysis revealed the presence of nine metabolites recognized as caffeic acid derivatives. The content of the predominant phenolic acids in the extracts, i.e. rosmarinic acid (RA) and salvianolic acid B (SAB), was determined with UHPLC. The highest yield of RA was found in shoots cultivated in the medium containing 1 µM IAA and 2 µM BAP (18.7 mg/g DW). The highest level of SAB (5.3–5.9 mg/g DW) was identified in multiple shoots grown in the presence of 1 µM IAA and 0.5–1 µM TDZ or 2 µM BAP.

Tài liệu tham khảo

Affonso VR, Bizzo HR, Lage CLS, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris. J Agric Foot Chem 57:6392–6395. https://doi.org/10.1021/jif900816c Al-Hawuamdeh FM, Shibili RA, Al-Qudah TS (2013) In vitro production of silymarin from Silybum marianum L. Med Aromat Plants. https://doi.org/10.4172/2167-01412.S1-001 Arias-Castro C, Scragg AH, Staford A, Rodriquez-Mendiola M (1993) Growth characteristic of Glycyrrhiza glabra cell suspension cultures. Plant Cell Tissue Org Cult 34:77–82. https://doi.org/10.1007/BF00048466 Bulgakov VP, Inyushkina YV, Fedoreyev S (2012) Rosmarinic acid and its derivatives: Biotechnology and applications. Crit Rev Biotechnol 32:203–217. https://doi.org/10.3109/07388551.2011.596804 Cao W, Guo X, Zheng H, Li D, Jia G, Wong I (2012) Current progress of research on pharmacological actions of salvianolic acid B. Chin J Int Med 18:316–320 Carlotto J, da Silva LM, Dartora N, Ferreira DM, de A Sabry, Filho D, de Paula Werner APS, Sassaki MF, Gorin GL, Iacomini PAJ, Ciprioni M, de Suza TR LM (2015) Identification of a caffeoylquinic acid isomer from Arctium lappa with potent anti-ulcer activity. Talanta 135:50–57. https://doi.org/10.1016/j.talanta.2014.11.068 Catarino MD, Silva AMS, Saraiva SC, Sabral AJFN, Cardoso SM (2015) Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab J Chem. https://doi.org/10.1016/j.arabic2015.04.018 Chen F, Long X, Liu Z, Shao H, Lu L (2014) Analysis of phenolic acids of Jerusalem Artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry. Sci World J. https://doi.org/10.1155/2014/568043 Cirlini M, Mena P, Tossatti M, Herhinger KA, Nieman KM, Dall’Asta C, DelRio D (2016) Phenolic acid volatile composition of dry spearmint (Mentha spicata L.) extract. Molecules 21:1007–1021. https://doi.org/10.3390/molecules21081007 Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134. https://doi.org/10.1023/A:1013374417961 Dai LM, Zhao CC, Jin HZ, Tang J, Shen YH, Li HL, Zhang WD (2008) A new ferulic acid ester and other constituents from Dracocephalum peregrinum. Arch Pharm Res 31(10):1325–1329. https://doi.org/10.1007/s12272-001-2113-2 Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104. https://doi.org/10.1016/j.jbiotec.2010.05.009 Endress R (1994) Plant cell biotechnology. Springer, Berlin Fattahi M, Nazeri V, Torras-Claveria L, Sefidkon F, Cusiod RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids; hairy roots cultures of Dracocephalum kotschyi Boiss. Ind Crops Prod 50:256–263. https://doi.org/10.1016/j.jbiotec.2010.05.009 Fraternale D, Giamperi L, Ricci D, Rocchi MBL, Guidi L, Epifano F, Marcotullio MC (2003) The effect of triacontanol of micropropagation and on secondary system of Thymus mastichina. Plant Cell Tissue Org Cult 74:87–97. https://doi.org/10.1023/A:1023321024040 Ghandi K, Kariraj CP, Venugopal RB, Jabeen FTZ, Rao S (2004) Rapid regeneration of Mentha piperita L. from shoot tip and nodal explants. Indian J Biotechnol 3:594–598 Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H (2015) The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Org Cult 122:699–708. https://doi.org/10.1007/s11240-015-0804-5 Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H (2017) The influence of cytokinins of proliferation and polyphenol accumulation in shoot cultures of Scutellaria altissima L. Phytochem Lett 20:449–455. https://doi.org/10.1016/j.phytol.2016.12.029 Hur YG, Suh CH, Kim S, Won J (2007) Rosmarinic acid induces apoptosis of activated T cells from rheumatoidal arthritis patients via mitochondrial pathway. J Clin Immunol 27:36–45. https://doi.org/10.1007/s10875-006-9057-8 Inyunshina YV, Bulgakov VP, Veselova MV, Bryukhanov VM, Zverev YF, Lampatov VV, Azarova OV, Tchemoded GK, Fedoreyev SA, Zhuravlev YN (2007) High rabdosin and rosmarinic acid production in Eritrichium sericeum callus cultures and the effect of the calli on Masugi-nephritis in rats. Biosci Biotechnol Biochem 71:1286–1293. https://doi.org/10.1271/bbb60684 Jaiong RW, Lou KM, Hon PM, Mak TC, Woo KS, Fung KP (2005) Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 12:237–246. https://doi.org/10.2174/0929867053363397 Kakasy A, Füzfai Z, Kursinszki L, Molnár-Perl I, Lemberkovics É (2006) Analysis of non-volatile constituents in Dracocephalum species by HPLC and GC–MS chromatographia.63: S17-S22. https://doi.org/10.1365/s10337-006-0741-x Karalija E, Parić A (2011) The effect of BA and IBA on the secondary metabolite production by shoot culture of Thymus vulgaris. Biol Nyssana 2:29–35 Kuo YH, Lee SM, Lai JS (2000) Constituents of the whole herb of Clinopodium laxiflorum. J Chin Chem Soc Taip 47:241–246. https://doi.org/10.1002/jccs.200000028 Lecompte J, Giraldo LJL, Laguerre M, Baréa B, Villeneuve P (2010) Synthesis, characterization and free radical scavenging properties of rosmarinic acid fatty ester. J Am Oil Soc 87:615–620. https://doi.org/10.1007/s11746-010-1543-8 Li GP, Zhao JF, Yang LY, Yang XD, Li L (2007) New monoterpenoids from Dracocephalum forrestii aerial parts. Ind J Chem 468:1352–1354 Li YG, Song L, Liu M, Hu ZB, Wong ZT (2009a) Advancement in analysis of Salviae miltiorrhizae radix et rhizome (Danshen). J Chromatogr A 1216:1941–1953. https://doi.org/10.1016/j.chroma.2008.12.032 Li SM, Yang XW, Li YL, Shen YH, Feng l, Wang YH, Zeng HW, Liu XH, Zhang CS, Long CL, Zhang WD (2009b) Chemical constituents of Dracocephalum forrestii. Planta Med 75:1591–1596. https://doi.org/10.1055/s-0029-1185868 Li GS, Jiang WI, Tian JW, Qu GW, Zhu HB, Fu FH (2010) In vitro band in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine 17:282–288. https://doi.org/10.1016/j.phymed.2009.05.002 Liu AH, Guo H, Ye M, Lin YH, Sun JH, Xu M, Guo DA (2007a) Detection characterization and identification of phenolic acids in Danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry J Chromatogr A 1161: 170–182. https://doi.org/10.1016/j.croma.2007.05.08 Liu AH, Liu YH, Yong M, Guo H, Guan SH, Su JM, Guo DA (2007b) Development of the fingerprints for the quality of the roots Salvia miltiorrhiza and its related preparations by HPLC-DAD and LC-MS(n). J Chromatogr B 856:32–41. https://doi.org/10.1016/j.jchromb.2006.08.002 Liu XN, Zhang XQ, Sun JS (2007c) Effect of cytokinins and elicitors on the production of hypericins and hyperforin metabolites in Hypericum sampsonni and Hypericum perforatum. Plant Growth Regul 53:207–214. https://doi.org/10.1007/s10725-007-9220-0 Łuczkiewicz M, Kokotkiewicz A, Gold D (2014) Plant growth regulators effect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro culture of Genista tinctoria. Plant Cell Tissue Org Cult 118:419–429. https://doi.org/10.1007/s1240-014-0494-4 Mehta J, Naruka R, Sain M, Dwiredi A, Sharma D, Mirza J (2012) An efficient protocol for clonal micropropagation of Mentha piperita L. (Pipperment). Asian J Plant Sci Res 2:518–523 Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Ncube N, Mhlongo MI, Piater LA, Steenkamp PA, Dubery IA, Madala NE (2014) Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method. Chem Cent J 8:66–76. https://doi.org/10.1186/s13065-014-0066-z Nitnaware KM, Naik DG, Nikam TD (2011) Thidiazuron—induced shoot organogenesis and production of hepatoprotective lignin phyllanthin and hypophyllanthin in Phyllanthus amarus. Plant Cell Tissue Org Cult 104:101–110. https://doi.org/10.3923/pjbs.2017.328.335 Nuenchamong N, Krittasilp K, Ingkaniiaran K (2011) Characterization of phenolic antioxidants in aqueos extract of Orthosiphon grandiflorus tea by LC-ESI-MS/MS coupled to DPPH assay. Food Chem 127: 1287–1293. https://doi.org/10.1016/j.foodchem.2011.01.085 Otroshy M, Moradi K (2013) Rapid regeneration of Dracocephalum kotschyi Boiss. from nodal explants. Int Life Sci Med Res 3:11–14. https://doi.org/10.5963/LSMR0301002 Ożarowski M, Mikołajczyk PL, Piasecka A, Kawińska E, Kujawska R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kamińska E, Kujawska M, Jodynis-Liebert J, Gruszczyńska AA, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B (2016) Influence of the Melissa officinalis leaf extract on long term memory in scopolamine animal model with assessment of mechanism of action. Evid Bored Complement Alternat Med 2016:9729818. https://doi.org/10.1155/2016/9729818 Petersen M (2013) Rosmarinic acid: new aspects. Phytoch Rev 12:207–227. https://doi.org/10.1007/s11101-013-9282-8 Piątczak E, Talar A, Kuźma Ł, Wysokińska H (2015) Iridoid and phenylethanoid glycoside production in multiple hoots and regenerated Rehmannia elata N.E. Brown ex Prain plants following micropropagation. Acta Pysiol Plant 37:233–255. https://doi.org/10.1007/s11738-015-2011-8 Rani G, Talwar D, Nagpal A, Virk GS (2006) Micropropagation of Coleus blumei from nodal segments and shoot tips. Biol Plant 50:496–500. https://doi.org/10.1007/s10535-006-0078-1 Ribeiro A, Caleja C, Barros L, Santos-Buelga C, Barreiro MF, Ferreira ICFR (2016) Rosemary extracts in functional foods: extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct 27:2182196. https://doi.org/10.1039/C6FO00270F Santos-Gomes PC, Fernandes-Ferreira M (2003) Essential oil produced by in vitro shoots of sage (Salvia officinalis). J Agric Food Chem 51:2260–2266. https://doi.org/10.1021/jf020945v Stalman M, Koskamp AM, Luderer R, Vernooy JHJ, Wind JC, Wullmes GJ, Craes AF (2003) Regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia J. Plant Physiol 160:607–614. https://doi.org/10.1078/0176-1617-00773 Tada H, Murakami Y, Omoto T, Shimomura K, Ishimaru K (1996) Rosmarinic acid and related phenolic in hairy root cultures of Ocimum basilicum. Phytochem 42:431–432. https://doi.org/10.1016/0031-9422(96)00005-2 Taha HS, Abdul El-Rahman RA, Fathalla M, Abdul El-Kareem MA, Aly UE(2008) Successful application for enhancement and production of anthocyanin pigment from calli cultures of some ornamental plants. Aust J Basic Appl Sci 4:1148–1156 Tisserot B, Vanghn S (2008) Growth, morphogenesis and essential oil production in Mentha spicata L. plantlets. In Vitro Cell Dev Biol 44:40–44. https://doi.org/10.1007/s11627-007-9077-y Wang S, Liu L, Wang L, Hu Y, Zhong W, Liu K (2012) Structural characterization and identification of major constituents in Jitai tablets by high-performance liquid chromatography/diode- array detection complied with electrospray ionization Tandem mass Spectrometry. Molecules 17: 10470–10483. https://doi.org/10.3390/molecules170910470 Weremczuk-Jeżyna I, Grzegorczyk-Karolak I, Frydrych B, Królicka A, Wysokińska H (2013) Hairy roots of Dracocephalum moldavica: rosmarinic acid content and antioxidant potential. Acta Physiol Plant 35:2095–2103. https://doi.org/10.1007/s11738-013-1244-7 Weremczuk-Jeżyna I, Skała E, Olszewska MA, Kiss AK, Balcerczak E, Wysokińska H, Kicel A (2016) The identification and quantitative determination of rosmarinic acid and salvianolic acid B in hairy root cultures of Dracocephalum forrestii W.W. Smith. Ind Crop Prod 91:125–131. https://doi.org/10.1016/jindcrop.2016.07.002 Xiao Y, Gao S, Di P, Chen J, Chen W, Zhang I (2010) Lithospermic acid B is more responsive to silver ions (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Biosci Rep 30:33–40. https://doi.org/10.1042/BSR2008012 Yang L, Yan Q, Mo H, Li X, Wong Q (2012) Determination of chlorogenic acid, baicalin and forsythin in shuanghuanglian preparations by HPLC-DAD. J Chil Chem Soc 57:1361–1363. https://doi.org/10.4067/S0717-97072012000400006 Yang S, Wang L, Guo X, Lou H, Ren D (2013) A new flavonoid glycoside and other constituents from Dracocephalum moldavica. Nat Prod Res 27:201–207. https://doi.org/10.1080/14786419.2012.666746 Zeng G, Xiao H, Liu J, Liang X (2006) Identification of phenolic constituents in Radix Salvia miltiorrhiza by liquid chromatography/electrosprayionization mass spectrometry. Rapid Commun Mass Spectrum 20: 499–506. https://doi.org/10.1002/rcm.2332 Zeng Q, Jin HZ, Quin JJ, Fu JJ, Hu XJ, Liu JH, Yan L, Chen M, Zhang WD (2010) Chemical constituents of plants from the genus Dracocephalum. Chem Biodivers 7:1911–1928. https://doi.org/10.1002/cbdv.200900188