Wettability conversion on the liquid flame spray generated superhydrophobic TiO2 nanoparticle coating on paper and board by photocatalytic decomposition of spontaneously accumulated carbonaceous overlayer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aromaa M, Arffman A, Suhonen H, Haapanen J, Keskinen J, Honkanen M, Nikkanen J-P, Levánen E, Messing ME, Deppert K, Teisala H, Tuominen M, Kuusipalo J, Stepien M, Saarinen JJ, Toivakka M, Mákelá JM (2012) Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using liquid flame spray. J Aerosol Sci 52:57–68
Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid. doi: https://doi.org/10.1007/s10404-012-0999-2
Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790
Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8
Beamson G, Briggs D (1992) High resolution XPS of organic polymers: The Scienta ESCA300 database. Wiley, New York
Borras A, Barranco A, González-Elipe AR (2008) Reversible superhydrophobic to superhydrophilic conversion of Ag@TiO2 composite nanofiber surfaces. Langmuir 24:8021–8026
Brinker CJ, Harrington MS (1981) Sol-gel derived antireflective coatings for silicon. Sol Energy Mater 5:159–172
Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177
Denison KR, Boxall C (2007) Photoinduced “stick–slip” on superhydrophilic semiconductor surfaces. Langmuir 23:4358–4366
Egeberg RC, Ullmann S, Alstrup I, Mullins CB, Chorkendorff I (2002) Dissociation of CH4 on Ni(111) and Ru(0001). Surf Sci 497:183–193
Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582
Gong X-Q, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562
Hirsimáki M, Paavilainen S, Nieminen JA, Valden M (2001) Role of translational and vibrational energy in the dissociative chemisorption of methane on Pd{110}. Surf Sci 482–485:171–176
Kanta A, Sedev R, Ralston J (2005) Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir 21:2400–2407
Kemell M, Pore V, Ritala M, Leskelá M, Lindén M (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179
Keskinen H, Mákelá JM, Aromaa M, Ristimáki J, Kanerva T, Levánen E, Mántylá T, Keskinen J (2007) Effect of silver addition on the formation and deposition of titania nanoparticles produced by liquid flame spray. J Nanopart Res 9:569–588
Kim H, Noh K, Choi C, Khamwannah J, Villwock D, Jin S (2011) Extreme superomniphobicity of multiwalled 8 nm TiO2 nanotubes. Langmuir 27:10191–10196
Koparde VN, Cummings PT (2008) Phase transformations during sintering of titania nanoparticles. ACS Nano 2:1620–1624
Kuusipalo J (ed) (2008) Paper and paperboard converting, 2nd edn. Paperi ja Puu Oy, Jyváskylá
Li Y, White T, Lim SH (2003) Structure control and its influence on photoactivity and phase transformation of TiO2 nano-particles. Rev Adv Mater Sci 5:211–215
Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389:364–368
Mákelá JM, Aromaa M, Teisala H, Tuominen M, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2011) Nanoparticle deposition from liquid flame spray onto moving roll-to-roll paperboard material. Aerosol Sci Technol 45:827–837
Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T, Hashimoto K (2002) Reversible wettability control of TiO2 surface by light irradiation. Surf Sci 511:401–407
Moulder J, Stickle W, Sobol P, Bomben K (1992) Handbook of X-ray photoelectron spectroscopy, 2nd edn. Perkin-Elmer Corp, Eden Prairie
Mukhopadhyay SM, Joshi P, Datta S, Macdaniel J (2002) Plasma assisted surface coating of porous solids. Appl Surf Sci 201:219–226
Naceur JB, Gaidi M, Bousbih F, Mechiakh R, Chtourou R (2012) Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol–gel technique. Curr Appl Phys 12:422–428
NIST (2003) X-ray photoelectron spectroscopy database, Version 3.5. National Institute of Standards and Technology, Gaithersburg. http://srdata.nist.gov/xps/
Nuhu A, Soares J, Gonzalez-Herrera M, Watts A, Hussein G, Bowker M (2007) Methanol oxidation on Au/TiO2 catalysts. Top Catal 44:293–297
Rao NP, Tymiak N, Blum J, Neuman A, Lee HJ, Girshick SL, McMurry PH, Heberlein J (1998) Hypersonic plasma particle deposition of nanostructured silicon and silicon carbide. J Aerosol Sci 29:707–720
Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics, 2nd edn. Wiley, New Jersey
Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126
Spagnol V, Cachet H, Baroux B, Sutter E (2009) Influence of sub-band-gap states on light induced long-lasting super-hydrophilic behavior of TiO2. J Phys Chem C 113:3793–3799
Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mákelá JM, Toivakka M (2011) Adjustable wettability of paperboard by liquid flame spray nanoparticle deposition. Appl Surf Sci 257:1911–1917
Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mákelá JM, Toivakka M (2012a) Surface chemical analysis of photocatalytic wettability conversion of TiO2 nanoparticle coating. Surf Coat Technol 208:73–79. doi: https://doi.org/10.1016/j.surfcoat.2012.08.008
Stepien M, Saarinen JJ, Teisala H, Tuominen M, Aromaa M, Kuusipalo J, Mákelá JM, Toivakka M (2012b) Surface chemical characterization of nanoparticle coated paperboard. Appl Surf Sci 258:3119–3125
Ström G, Carlsson G (1993) Chemical composition of coated paper surfaces determinated by means of esca. Nordic Pulp Pap Res J 1:105–112
Takeda S, Fukawa M, Hayashi Y, Matsumoto K (1999) Surface OH group governing adsorption properties of metal oxide films. Thin Solid Films 339:220–224
Tanner RE, Liang Y, Altman EI (2002) Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf Sci 506:251–271
Teisala H, Tuominen M, Aromaa M, Mákelá JM, Stepien M, Saarinen JJ, Toivakka M, Kuusipalo J (2010) Development of superhydrophobic coating on paperboard surface using the liquid flame spray. Surf Coat Technol 205:436–445
Teisala H, Tuominen M, Kuusipalo J (2011) Adhesion mechanism of water droplets on hierarchically rough superhydrophobic rose petal surface. J Nanomater. doi: https://doi.org/10.1155/2011/818707
Teisala H, Tuominen M, Aromaa M, Stepien M, Mákelá JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012a) Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Langmuir 28:3138–3145
Teisala H, Tuominen M, Aromaa M, Stepien M, Mákelá JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012b) Nanoparticle deposition on packaging materials by liquid flame spray—generation of superhydrophilic and superhydrophobic coatings. In: Proceedings of the special symposium on recent advances in adhesion science and technology, 240th ACS national meeting, August 22–26, 2010, Boston (accepted)
Teisala H, Tuominen M, Aromaa M, Stepien M, Mákelá JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012c) High- and low-adhesive superhydrophobicity on the liquid flame spray-coated board and paper: structural effects on surface wetting and transition between the low- and high-adhesive states. Colloid Polym Sci. doi: https://doi.org/10.1007/s00396-012-2833-5
Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19:1743–1748
Tilocca A, Selloni A (2004) Methanol adsorption and reactivity on clean and hydroxylated anatase(101) surfaces. J Phys Chem B 108:19314–19319
Tuominen M, Teisala H, Aromaa M, Stepien M, Mákelá JM, Saarinen JJ, Toivakka M, Kuusipalo J (2012) Superhydrophilic surface for paper and board. J Adhes Sci Technol. doi: https://doi.org/10.1080/01694243.2012.697744
Walker AV, King DA (1999) Dynamics of the dissociative adsorption of methane on Pt{110}(12). Phys Rev Lett 82:5156–5159
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432
Wang CY, Groenzin H, Shultz MJ (2003) Molecular species on nanoparticulate anatase TiO2 film detected by sum frequency generation: trace hydrocarbons and hydroxyl groups. Langmuir 19:7330–7334
Wang CY, Groenzin H, Shultz MJ (2004) Surface characterization of nanoscale TiO2 film by sum frequency generation using methanol as a molecular probe. J Phys Chem B 108:265–272
Wang CY, Groenzin H, Shultz MJ (2005) Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J Am Chem Soc 127:9736–9744
White JM, Szanyi J, Henderson MA (2003) The photon-driven hydrophilicity of titania: a model study using TiO2(110) and adsorbed trimethyl acetate. J Phys Chem B 107:9029–9033
Yang G-J, Li C-J, Wang Y–Y (2005) Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock. J Therm Spray Technol 14:480–486
