On nodal prime Fano threefolds of degree 10

Science China Mathematics - Tập 54 - Trang 1591-1609 - 2011
Olivier Debarre1, Atanas Iliev2, Laurent Manivel3
1Département de Mathématiques et Applications, UMR CNRS 8553, École Normale Supérieure, Paris cedex 05, France
2Department of Mathmetics, Seoul National University, Seoul, Korea
3Institut Fourier, Université de Grenoble I et CNRS, Saint-Martin d’Hères, France

Tóm tắt

We study the geometry and the period map of nodal complex prime Fano threefolds with index 1 and degree 10. We show that these threefolds are birationally isomorphic to Verra threefolds, i.e., hypersurfaces of bidegree (2, 2) in P 2 × P 2. Using Verra’s results on the period map for these threefolds and on the Prym map for double étale covers of plane sextic curves, we prove that the fiber of the period map for our nodal threefolds is the union of two disjoint surfaces, for which we give several descriptions. This result is the analog in the nodal case of a result of Debarre O, Iliev A, Manivel L (arXiv: 0812.3670) in the smooth case.

Tài liệu tham khảo

Beauville A. Variétés de Prym et jacobiennes intermédiaires. Ann Sci Éc Norm Supér, 1977, 10: 309–391 Beauville A. Determinantal hypersurfaces. Michigan Math J, 2000, 48: 39–64 Beauville A. Sous-variétés spéciales des variétés de Prym. Compos Math, 1982, 45: 357–383 Catanese F. Generic invertible sheaves of 2-torsion and generic invertible theta-characteristics on nodal plane curves. In: Lecture Notes in Math, vol. 1124. Berlin: Springer-Verlag, 1985, 58–70 Catanese F. Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent Math, 1981, 63: 433–465 Catanese F. Homological algebra and algebraic surfaces. In: Algebraic Geometry. Proc Sympos Pure Math, vol. 62, Part 1. Providence, RI: Amer Math Soc, 1997, 3–56 Collino A. Footnote to a paper of Griffiths. Boll Un Mat Ital, 1980, 17: 748–756 Debarre O. Sur les variétés de Prym des courbes tétragonales. Ann Sci Éc Norm Supér, 1988, 21: 545–559 Debarre O, Iliev A, Manivel L. On the period map for prime Fano threefolds of degree 10. arXiv: 0812.3670 Dixon A C. Note on the Reduction of a Ternary Quantic to a Symmetrical Determinant. Math Proc Cambridge Philos Soc, 1902, 11: 350–351 Grothendieck A. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux. Paris-Amsterdam: Masson & North-Holland, 1968 Harris J. Theta-characteristics on algebraic curves. Trans Amer Math Soc, 1982, 271: 611–638 Hodge W V D, Pedoe D. Methods of Algebraic Geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties. Reprint of the 1952 original. Cambridge Mathematical Library. Cambridge: Cambridge University Press, 1994 Iskovskikh V A, Prokhorov Y. Fano varieties. In: Algebraic Geometry, V. Encyclopaedia Math Sci, vol. 47. Berlin: Springer-Verlag, 1999 Logachev D. Fano threefolds of genus 6. arXiv: math/0407147 Mori S. Threefolds whose canonical bundles are not numerically effective. Ann of Math, 1982, 116: 133–176 Mumford D. On the Kodaira dimension of the Siegel modular variety. In: Algebraic Geometry-Open Problems. Lecture Notes in Math, vol. 997. Berlin: Springer, 1983, 348–375 Piontkowski J, Van de Ven A. The automorphism group of linear sections of the Grassmannian G(1,N). Doc Math, 1999, 4: 623–664 Verra A. The Prym map has degree two on plane sextics. In: Proc. The Fano Conference. Turin: Univ Torino, 2004, 735–759