Challenges in the estimation of Net SURvival: The CENSUR working survival group

Revue d'Épidémiologie et de Santé Publique - Tập 64 - Trang 367-371 - 2016
R. Giorgi1,2
1Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Marseille, France
2APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l’Information et de la Communication, Marseille, France

Tài liệu tham khảo

Muir, 1985, The cancer registry in cancer control: an overview Parkin, 2008, The role of cancer registries in cancer control, Int J Clin Oncol, 13, 102, 10.1007/s10147-008-0762-6 Sant, 2007, Ten-year survival and risk of relapse for testicular cancer: a EUROCARE high resolution study, Eur J Cancer, 43, 585, 10.1016/j.ejca.2006.11.006 Allemani, 2013, Breast cancer survival in the US and Europe: a CONCORD high-resolution study, Int J Cancer, 132, 1170, 10.1002/ijc.27725 Percy, 1981, Accuracy of cancer death certificates and its effect on cancer mortality statistics, Am J Public Health, 71, 242, 10.2105/AJPH.71.3.242 Berkson, 1950, Calculation of survival rates for cancer, Mayo Clinic, 25, 270 Jensen, 1991, Purposes and uses of cancer registration Ellis, 2014, Cancer incidence, survival and mortality: explaining the concepts, Int J Cancer, 135, 1774, 10.1002/ijc.28990 Estève, 1994 Perme, 2012, On estimation in relative survival, Biometrics, 68, 113, 10.1111/j.1541-0420.2011.01640.x Danieli, 2012, Estimating net survival: the importance of allowing for informative censoring, Stat Med, 31, 775, 10.1002/sim.4464 Jooste, 2013, French Network of Cancer Registries (FRANCIM). Unbiased estimates of long-term net survival of solid cancers in France, Int J Cancer, 132, 2370, 10.1002/ijc.27857 De Angelis, 2014, Cancer survival in europe 1999–2007 by country and age: results of EUROCARE-5 – a population-based study, Lancet Oncol, 15, 23, 10.1016/S1470-2045(13)70546-1 Howlader, 2011 Coleman, 2008, Cancer survival in five continents: a worldwide population-based study (CONCORD), Lancet Oncol, 9, 730, 10.1016/S1470-2045(08)70179-7 Giorgi, 2005, Regression models for crude and relative survival: a comparative review, Rev Epidemiol Sante Publique, 53, 409, 10.1016/S0398-7620(05)84623-1 Putter, 2007, Tutorial in biostatistics: competing risks and multi-state models, Stat Med, 26, 2389, 10.1002/sim.2712 Ederer, 1959 Ederer, 1961, The relative survival rate: a statistical methodology, Natl Cancer Institute Monogr, 6, 101 Hakulinen, 1982, Cancer survival corrected for heterogeneity in patient withdrawal, Biometrics, 38, 933, 10.2307/2529873 Robins, 1993, Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers, 24 Estève, 1990, Relative survival and the estimation of net survival: elements for further discussion, Stat Med, 9, 529, 10.1002/sim.4780090506 Giorgi, 2003, A relative survival regression model using B-spline functions to model non-proportional hazards, Stat Med, 22, 2767, 10.1002/sim.1484 Dickman, 2004, Regression models for relative survival, Stat Med, 23, 51, 10.1002/sim.1597 Remontet, 2007, An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies, Stat Med, 26, 2214, 10.1002/sim.2656 Roche, 2013, Cancer net survival on registry data: use of the new unbiased Pohar-Perme estimator and magnitude of the bias with the classical methods, Int J Cancer, 132, 2359, 10.1002/ijc.27830 Grosclaude, 2013, 1 Montet, 2016 Monnereau, 2016 Grafféo, 2012, The impact of additional life-table variables on excess mortality estimates, Stat Med, 31, 4219, 10.1002/sim.5493 Dupont, 2013, Description of an approach based on maximum likelihood to adjust an excess hazard model with a random effect, Cancer Epidemiol, 37, 449, 10.1016/j.canep.2013.04.001 Belot, 2014, A joint frailty model to estimate the recurrence process and the disease-specific mortality process without needing the cause of death, Stat Med, 33, 3147, 10.1002/sim.6140 Monnereau, 2013, Unbiased estimates of long-term net survival of haematological malignancy patients detailed by major subtypes in France, Int J Cancer, 132, 2378, 10.1002/ijc.27889 Pohar, 2006, Relative survival analysis in R, Comput Methods Programs Biomed, 81, 272, 10.1016/j.cmpb.2006.01.004 Clerc-Urmès, 2014, Net survival estimation with stns, Stata J, 14, 87, 10.1177/1536867X1401400107 Grafféo, 2016, A log-rank-type test to compare net survival distributions, Biometrics, 72, 760, 10.1111/biom.12477 Mounier, 2015, Trends in excess mortality in follicular lymphoma at a population level, Eur J Haematol, 94, 120, 10.1111/ejh.12403 Mounier, 2015, Changes in dynamics of excess mortality rates and net survival after diagnosis of follicular lymphoma or diffuse large B-cell lymphoma: comparison between European population-based data (EUROCARE-5), Lancet Heamatol, 2, e481, 10.1016/S2352-3026(15)00155-6 Grzebyk M Flexrsurv: Flexible relative survival. R package version 1.3. Meyer, 2014, Big data for population-based cancer research: the integrated cancer information and surveillance system, NC Med J, 75, 265