Acyclic edge coloring of subcubic graphs
Tài liệu tham khảo
Alon, 1991, Acyclic coloring of graphs, Random Structures and Algorithms, 2, 343, 10.1002/rsa.3240020303
Alon, 2001, Acyclic edge-colorings of graphs, Journal of Graph Theory, 37, 157, 10.1002/jgt.1010
Alon, 2002, Algorithmic aspects of acyclic edge colorings, Algorithmica, 32, 611, 10.1007/s00453-001-0093-8
Amar, 2001, All to all wavelength routing in all-optical compounded networks, Discrete Mathematics, 235, 353, 10.1016/S0012-365X(00)00289-2
Borodin, 1979, Acyclic colorings of planar graphs, Discrete Mathematics, 25, 211, 10.1016/0012-365X(79)90077-3
Burnstein, 1979, Every 4-valent graph has an acyclic five-coloring, Soobsč.ˇ Akad. Nauk Gruzin. SSR, 93, 21
Diestel, 2000, vol. 173
Gerke, 2007, Generalised acyclic edge colourings of graphs with large girth, Discrete Mathematics, 307, 1668, 10.1016/j.disc.2006.09.004
Greenhill, 2005, Bounds on the generalised acyclic chromatic numbers of bounded degree graphs, Graphs and Combinatorics, 21, 407, 10.1007/s00373-005-0635-y
Grünbaum, 1973, Acyclic colorings of planar graphs, Israel Journal of Mathematics, 14, 390, 10.1007/BF02764716
Kostochka, 1997, Acyclic and oriented chromatic numbers of graphs, Journal of Graph Theory, 24, 331, 10.1002/(SICI)1097-0118(199704)24:4<331::AID-JGT5>3.0.CO;2-P
M. Molloy, B. Reed, Further algorithmic aspects of Lovász local lemma, in: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 524–529
Muthu, 2005, Improved bounds on acyclic edge coloring, Electronic Notes in Discrete Mathematics, 19, 171, 10.1016/j.endm.2005.05.024
Muthu, 2006, Optimal acyclic edge coloring of grid like graphs, vol. 4112, 360
Muthu, 2007, Acyclic edge colouring of outerplanar graphs, vol. 4508, 144
Něsetřil, 2005, The acyclic edge chromatic number of a random d-regular graph is d+1, Journal of Graph Theory, 49, 69, 10.1002/jgt.20064
Skulrattankulchai, 2004, Acyclic colorings of subcubic graphs, Information Processing Letters, 92, 161, 10.1016/j.ipl.2004.08.002
