Unique heterostructures of ZnCdS nanoplates with Bi2S3−terminated edges for optimal CO2−to−CO photoconversion
Nano Materials Science - 2022
Tài liệu tham khảo
Alexander, 2011, Indirect feedbacks to rising CO2, Nature, 475, 177, 10.1038/475177a
Eli, 2015, After Paris, The rocky road ahead Science, 350, 1018
Handoko, 2018, Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques, Nat. Catal., 1, 922, 10.1038/s41929-018-0182-6
Gabriele, 2009, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels Catal, Today Off., 148, 191, 10.1016/j.cattod.2009.07.075
Tong, 2012, Nano–photocatalytic materials: possibilities and challenges, Adv. Mater., 24, 229, 10.1002/adma.201102752
Xu, 2020, Unique S−scheme heterojunctions in self−assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction, Nat. Commun., 11, 4613, 10.1038/s41467-020-18350-7
Ran, 2018, Cocatalysts in semiconductor−based ohotocatalytic CO2 reduction: achievements, challenges, and opportunities, Adv. Mater., 30, 10.1002/adma.201704649
Xiang, 2015, Graphene−based photocatalysts for solar−fuel generation, Angew. Chem., Int. Ed., 54, 11350, 10.1002/anie.201411096
Huang, 2021, Promoted photocarrier transfer and increased active sites for optimal CO2–to–CH4 photoconversion via the modification of atomically dispersed transition metal ions in CdZnS nanocrystals, J. Mater. Chem., 9, 20350, 10.1039/D1TA05467H
Yang, 2010, Artificial photosynthesis over crystalline TiO2−based catalysts: fact or fiction?, J. Am. Chem. Soc., 132, 8398, 10.1021/ja101318k
Hong, 2013, Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods, Anal. Methods, 5, 1086, 10.1039/c2ay26270c
Huang, 2020, ZnxCd1−xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction, Appl. Catal. B−Environ., 267
Zhang, 2011, Visible light photocatalytic H2−production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer, Nano Lett., 11, 4774, 10.1021/nl202587b
Li, 2013, Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible−light photocatalytic H2−production activity, ACS Catal., 3, 882, 10.1021/cs4000975
Ning, 2016, Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst, Green Chem., 18, 3628, 10.1039/C6GC00572A
Zhang, 2020, Z−scheme photocatalytic systems for carbon dioxide reduction: where are we now?, Angew. Chem., Int. Ed., 59, 22894, 10.1002/anie.201914925
Low, 2017, Al–G. A. Ahmed Heterojunction photocatalysts, Adv. Mater., 29, 10.1002/adma.201601694
Guo, 2020, Highly efficient CH3OH production over Zn0.2Cd0.8S decorated g−C3N4 heterostructures for the photoreduction of CO2, Appl. Surf. Sci., 528, 10.1016/j.apsusc.2020.146943
Pandit, 2020, A simplistic approach for the synthesis of CuS−CdS heterostructure: a novel photo catalyst for oxidative dye degradation, J. Environ. Chem. Eng., 8
Wan, 2021, Metallic CuS decorated CdS nanowires for efficient photocatalytic H2 evolution under visible−light irradiation, J. Alloys Compd., 871, 10.1016/j.jallcom.2021.159461
Wang, 2019, In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer, J. Am. Chem. Soc., 141, 13434, 10.1021/jacs.9b04482
Niu, 2019, In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible−light photocatalytic activity Inorg, Chem. Front., 6, 791
Wang, 2019, In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction, J. Catal., 377, 209, 10.1016/j.jcat.2019.06.007
Li, 2021, All−solid−state direct Z−scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light, J. Mater. Chem., 16, 10270, 10.1039/D1TA01220G
Wang, 2017, Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction, J. Am. Chem. Soc., 139, 17305, 10.1021/jacs.7b10733
Li, 2018, Highly efficient visible−light driven solar−fuel production over tetra(4−carboxyphenyl)porphyrin iron(III) chloride using CdS/Bi2S3 heterostructure as photosensitizer, Appl. Catal., B−Environ., 238, 656, 10.1016/j.apcatb.2018.07.066
Fang, 2011, Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure, J. Phys. Chem. C, 115, 13968, 10.1021/jp112259p
Huang, 2020, Visible−light−driven photocatalytic H2 evolution over CdZnS nanocrystal solid solutions: interplay of twin structures, sulfur vacancies and sacrificial agents, J. Mater. Chem., 8, 3882, 10.1039/C9TA13836F
Li, 2019, Al2O3 support triggering highly efficient photoreduction of CO2 with H2O on noble–metal–free CdS/Ni9S8/Al2O3, Appl. Catal. B−Environ, 240, 174, 10.1016/j.apcatb.2018.08.060
Zhao, 2018, CdS/NH2–UiO–66 hybrid membrane reactors for the efficient photocatalytic conversion of CO2, J. Mater. Chem., 6, 20152, 10.1039/C8TA05970E
Xu, 2022, Facile synthesis of compact CdS–CuS heterostructures for optimal CO2−to−syngas photoconversion Inorg, Chem. Front., 9, 2150
Huang, 2019, Controlled growth of ZnS/ZnO heterojunctions on porous biomass carbons via one−step carbothermal reduction enables visible−light−driven photocatalytic H2 production Inorg, Chem. Front., 6, 2035
Rangappa, 2020, Construction of a highly efficient and durable 1D ternary CdS/ZnS/Pt nanohybrid catalyst for photocatalytic CO2 reduction into chemical fuels under solar light irradiation, ACS Appl. Energy Mater., 3, 10533, 10.1021/acsaem.0c01583
Zhong, 2020, One−dimensional nanocrystals of cobalt perylene diimide polymer with in−situ generated FeOOH for efficient photocatalytic water oxidation, Appl. Catal. B−Environ., 260
Huang, 2019, One–step carbothermal synthesis of robust CdS@BPC photocatalysts in the presence of biomass porous carbons, ACS Sustainable Chem. Eng., 7, 16835, 10.1021/acssuschemeng.9b04395
Yu, 2020, CdZnS nanorods with rich sulphur vacancies for highly efficient photocatalytic hydrogen production, Chem. Commun., 56, 7765, 10.1039/D0CC00522C
Huang, 2020, Localized surface plasmon resonance enhanced visible–light–driven CO2 photoreduction in Cu nanoparticle loaded ZnInS solid solutions, Nanoscale, 12, 15169, 10.1039/D0NR01801E
Hosseini, 2008, Fabrication of high conductivity TiO2/Ag fibrous electrode by the electrophoretic deposition method, J. Phys. Chem. C, 112, 18686, 10.1021/jp8046054
Wang, 2018, Construction of ZnIn2S4–In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction, J. Am. Chem. Soc., 140, 5037, 10.1021/jacs.8b02200
Zhang, 2020, Cuprous ion (Cu+) doping induced surface/interface engineering for enhancing the CO2 photoreduction capability of W18O49 nanowires, J. Colloid Interface Sci., 572, 306, 10.1016/j.jcis.2020.03.090
Jing, 2017, MIL−68(Fe) as an efficient visible−light−driven photocatalyst for the treatment of a simulated waste−water contain Cr(VI) and Malachite Green, Appl. Catal. B−Environ., 260, 9, 10.1016/j.apcatb.2016.12.070
Fukuzumi, 2018, Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes, Chem. Sci., 9, 6017, 10.1039/C8SC02220H
Bai, 2022, Integration of 2D layered CdS/WO3 S−scheme heterojunctions and metallic Ti3C2 MXene−based Ohmic junctions for effective photocatalytic H2 generation, Chin. J. Catal., 43, 359, 10.1016/S1872-2067(21)63883-4
Li, 2022, In situ construction of a C3N5 nanosheet/Bi2WO6 nanodot S−scheme heterojunction with enhanced structural defects for the efficient photocatalytic removal of tetracycline and Cr(VI), Inorg. Chem. Front., 9, 2479, 10.1039/D2QI00317A
Li, 2022, Rationally designed Ta3N5/BiOCl S−scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): performance, toxicity evaluation and mechanism insight, J. Mater. Sci. Technol., 123, 177, 10.1016/j.jmst.2022.02.012
Li, 2022, Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N−rich carbon nitride (C3N5) S−scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr(VI): intermediate toxicity and mechanism insight, J. Colloid Interface Sci., 624, 219, 10.1016/j.jcis.2022.05.151
Yu, 2021, Synergistic effect of Cu single atoms and Au−Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction, ACS Nano, 15, 14453, 10.1021/acsnano.1c03961
Huang, 2022, Engineering hierarchical architecture of Metal−Organic frameworks for highly efficient overall CO2 photoreduction, Small, 18