Fast pyrolysis of guaiacol to simple phenols: Experiments, theory and kinetic model

Chemical Engineering Science - Tập 207 - Trang 619-630 - 2019
Attada Yerrayya1, Upendra Natarajan1, R. Vinu1,2
1Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
2National Centre for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amen-Chen, 2001, Production of monomeric phenols by thermochemical conversion of biomass: a review, Bioresour. Technol., 79, 277, 10.1016/S0960-8524(00)00180-2

Asmadi, 2011, Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei, J. Anal. Appl. Pyrol., 92, 88, 10.1016/j.jaap.2011.04.011

Batt, 1979, The gas phase decomposition of alkoxy radicals, Int. J. Chem. Kinet., 11, 977, 10.1002/kin.550110905

Baulch, 1994, Evaluated kinetic data for combustion modelling, J. Phys. Chem. Ref. Data, 23, 847, 10.1063/1.555953

Beste, 2009, Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers, J. Org. Chem., 74, 2837, 10.1021/jo9001307

Beste, 2010, Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers, Energy Fuels, 24, 2857, 10.1021/ef1001953

Beste, 2008, Computational prediction of α/β selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers, J. Phys. Chem. A, 112, 4982, 10.1021/jp800767j

Britt, 2000, Flash vacuum pyrolysis of methoxy-substituted lignin model compounds, J. Org. Chem., 65, 1376, 10.1021/jo991479k

Choi, 2016, Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds, Green Chem., 18, 1762, 10.1039/C5GC02268A

Dorrestijn, 2000, The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, J. Anal. Appl. Pyrol., 54, 153, 10.1016/S0165-2370(99)00082-0

Dorrestijn, 1999, The radical-induced decomposition of 2-methoxyphenol, J. Chem. Soc. Perkin Trans., 2, 777, 10.1039/a809619h

Elder, 2014, Density functional theory study of the concerted pyrolysis mechanism for lignin models, Energy Fuels, 28, 5229, 10.1021/ef5013648

Frisch, 2016

Furutani, 2017, Theoretical study on the kinetics of thermal decomposition of guaiacol and catechol, J. Phys. Chem. A, 121, 8495, 10.1021/acs.jpca.7b08112

He, 1988, Kinetics of hydrogen and hydroxyl radical attack on phenol at high temperatures, J. Phys. Chem., 92, 2196, 10.1021/j100319a023

Huang, 2015, Pyrolysis mechanism of α-O-4 linkage lignin dimer: a theoretical study, J. Anal. Appl. Pyrol., 113, 655, 10.1016/j.jaap.2015.04.012

Huang, 2013, Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry, J. Fuel Chem. Technol., 41, 657, 10.1016/S1872-5813(13)60031-6

Huang, 2013, Theoretical studies on pyrolysis mechanism of guaiacol as a lignin model compound, J. Renew. Sust. Energy, 5, 043112, 10.1063/1.4816497

Huang, 2011, Theory studies on pyrolysis mechanism of phenethyl phenyl ether, Comput. Theor. Chem., 976, 51, 10.1016/j.comptc.2011.08.001

Huang, 2014, Density functional theory studies on pyrolysis of β-O-4 type lignin dimer model compound, J. Anal. Appl. Pyrol., 109, 98, 10.1016/j.jaap.2014.07.007

Huang, 2015, A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer, Comput. Theor. Chem., 1054, 80, 10.1016/j.comptc.2014.12.007

Ince, 2017, Group additive modeling of substituent effects in monocyclic aromatic hydrocarbon radicals, AIChE J., 63, 2089, 10.1002/aic.15588

Kim, 2011, Computational study of bond dissociation enthalpies for a large range of native and modified lignins, J. Phys. Chem. Lett., 2, 2846, 10.1021/jz201182w

Klein, 2008, Modeling of lignin thermolysis, Energy Fuels, 22, 2175, 10.1021/ef800285f

Liu, 2016, Study on pyrolysis mechanism of three guaiacyl- type lignin monomeric model compounds, J. Anal. Appl. Pyrol., 118, 123, 10.1016/j.jaap.2016.01.007

Liu, 2003, Theoretical study and rate constant calculation of the CH2O+CH3 reaction, J. Chem. Phys., 119, 7214, 10.1063/1.1605938

Liu, 2014, Study of guaiacol pyrolysis mechanism based on density functional theory, Fuel Process. Technol., 123, 159, 10.1016/j.fuproc.2014.01.002

Mulcahy, 1963, Reaction of phenoxy radicals with methyl radicals in the gaseous phase, Nature, 199, 761, 10.1038/199761a0

Mullen, 2010, Catalytic pyrolysis-GC/MS of lignin from several sources, Fuel Process. Technol., 91, 1446, 10.1016/j.fuproc.2010.05.022

Nair, 2016, Production of guaiacols via catalytic fast pyrolysis of alkali lignin using titania, zirconia and ceria, J. Anal. Appl. Pyrol., 119, 31, 10.1016/j.jaap.2016.03.020

Nowakowska, 2014, Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification, Combustion Flame, 161, 1474, 10.1016/j.combustflame.2013.11.024

Nowakowska, 2018, Kinetic study of the pyrolysis and oxidation of guaiacol, J. Phys. Chem. A, 122, 7894, 10.1021/acs.jpca.8b06301

Nowakowski, 2010, Lignin fast pyrolysis: Results from an international collaboration, J. Anal. Appl. Pyrol., 88, 53, 10.1016/j.jaap.2010.02.009

Parthasarathi, 2011, Theoretical study of the remarkably diverse linkages in lignin, J. Phys. Chem. Lett., 2, 2660, 10.1021/jz201201q

Patwardhan, 2011, Understanding the fast pyrolysis of lignin, ChemSusChem, 4, 1629, 10.1002/cssc.201100133

Pelucchi, 2019, Detailed kinetics of substituted phenolic species in pyrolysis bio-oils, React. Chem. Eng., 4, 490, 10.1039/C8RE00198G

Poutsma, 2000, Fundamental reactions of free radicals relevant to pyrolysis reactions, J. Anal. Appl. Pyrol., 54, 5, 10.1016/S0165-2370(99)00083-2

Proano-Aviles, 2017, Heat and mass transfer in a furnace based micropyrolyzer, Energy Technol., 5, 189, 10.1002/ente.201600279

Resende, 2008, Non-catalytic gasification of lignin in supercritical water, Energy Fuels, 22, 1328, 10.1021/ef700574k

Robichaud, 2016, Pyrolysis mechanisms of lignin model compounds using a heated micro-reactor, 145

Verma, 2016, DFT analyses of reaction pathways and temperature effects on various guaiacol conversion reactions in gas phase environment, Chem. Select, 1, 6196

Vinu, 2012, Unraveling reaction pathways and specifying reaction kinetics for complex systems, Annu. Rev. Chem. Biomol. Eng., 3, 29, 10.1146/annurev-chembioeng-062011-081108

Wang, 2016, Theoretic studies on decomposition mechanism of o-methoxy phenethyl phenyl ether: Primary and secondary reactions, J. Anal. Appl. Pyrol., 117, 325, 10.1016/j.jaap.2015.10.016

Westbrook, 1977, A numerical model of chemical kinetics of combustion in a turbulent flow reactor, J. Phys. Chem., 81, 2542, 10.1021/j100540a036

Windt, 2009, Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GC-MS/FID and GC×GC-TOFMS/FID, J. Anal. Appl. Pyrol., 85, 38, 10.1016/j.jaap.2008.11.011