Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01

Elsevier BV - Tập 289 - Trang 121704 - 2019
Shashi Kant Bhatia1,2, Ranjit Gurav1, Tae-Rim Choi1, Yeong Hoon Han1, Ye-Lim Park1, Jun Young Park1, Hye-Rim Jung1, Soo-Yeon Yang1, Hun-Suk Song1, Sang-Hyoun Kim3, Kwon-Young Choi4, Yung-Hun Yang1,2
1Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
2Institute for Ubiquitous Information Technology and App1ications (CBRU), Konkuk University, Seoul, South Korea
3School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
4Department of Environmental Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea

Tài liệu tham khảo

Abraham, 2016, Potential of rice straw for bio-refining: an overview, Bioresour. Technol., 215, 29, 10.1016/j.biortech.2016.04.011 Aleixandre-Tudo, 2017, Spectrophotometric analysis of phenolic compounds in grapes and wines, J. Agric. Food. Chem., 65, 4009, 10.1021/acs.jafc.7b01724 Atabani, 2012, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew. Sustain. Energy Rev., 16, 2070, 10.1016/j.rser.2012.01.003 Awasthi, 2019, Production of phenolic compounds using waste coir pith: estimation of kinetic and thermodynamic parameters, Bioresour. Technol., 274, 173, 10.1016/j.biortech.2018.11.073 Bhatia, 2015, Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters), Fuel, 159, 189, 10.1016/j.fuel.2015.06.084 Bhatia, 2016, Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production, 3 Biotech, 6, 223, 10.1007/s13205-016-0539-y Bhatia, 2016, Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source, Bioresour. Technol., 217, 141, 10.1016/j.biortech.2016.02.055 Bhatia, 2017, Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01, Bioresour. Technol., 233, 99, 10.1016/j.biortech.2017.02.061 Bhatia, 2017, Current status and strategies for second generation biofuel production using microbial systems, Energy Convers. Manage., 148, 1142, 10.1016/j.enconman.2017.06.073 Bhatia, 2017, An overview of microdiesel—a sustainable future source of renewable energy, Renew. Sustain. Energy Rev., 79, 1078, 10.1016/j.rser.2017.05.138 Bhatia, 2018, Biowaste-to-bioenergy using biological methods–a mini-review, Energy Convers. Manage., 177, 640, 10.1016/j.enconman.2018.09.090 Bhatia, 2018, Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119, Bioresour. Technol., 271, 306, 10.1016/j.biortech.2018.09.122 Bhatia, 2019, Effect of synthetic and food waste-derived volatile fatty acids on lipid accumulation in Rhodococcus sp. YHY01 and the properties of produced biodiesel, Energy Convers. Manage., 192, 385, 10.1016/j.enconman.2019.03.081 Bhatia, 2019, A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering, Bioresour. Technol., 286, 27, 10.1016/j.biortech.2019.121383 Bhatia, 2019, Carbon dioxide capture and bioenergy production using biological system – a review, Renew. Sustain. Energy Rev., 110, 143, 10.1016/j.rser.2019.04.070 Brzonova, 2017, Fungal biotransformation of insoluble Kraft lignin into a water soluble polymer, Ind. Eng. Chem. Res., 56, 6103, 10.1021/acs.iecr.6b04822 Cao, 2018, Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects, Bioresour. Technol., 269, 465, 10.1016/j.biortech.2018.08.065 Das, 2018, Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources, ACS Sustain. Chem. Eng., 6, 3367, 10.1021/acssuschemeng.7b03541 Flores-Gómez, 2018, Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery, Biotechnol. Biofuels, 11, 7, 10.1186/s13068-017-0995-6 Hazeena, 2019, Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol, Bioresour. Technol., 278, 145, 10.1016/j.biortech.2019.01.042 He, 2017, Lipid production from dilute alkali corn stover lignin by Rhodococcus strains, ACS Sustain. Chem. Eng., 5, 2302, 10.1021/acssuschemeng.6b02627 Kosa, 2012, Bioconversion of lignin model compounds with oleaginous Rhodococci, Appl. Microbiol. Biotechnol., 93, 891, 10.1007/s00253-011-3743-z Kumar, 2017, Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp ISTKB, ACS Omega, 2, 9156, 10.1021/acsomega.7b01615 Kurosawa, 2013, Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production, Biotechnol. Biofuels, 6, 1754, 10.1186/1754-6834-6-134 Kurosawa, 2014, Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels, J. Microb. Biochem. Technol., 6, 254, 10.4172/1948-5948.1000153 Kurosawa, 2015, Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors, Biotechnol. Biofuels, 8, 76, 10.1186/s13068-015-0258-3 Le, 2017, Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci, RSC Adv., 7, 4108, 10.1039/C6RA28033A Li, 2019, Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains, Biotechnol. Biofuels, 12, 60, 10.1186/s13068-019-1395-x Linger, 2014, Lignin valorization through integrated biological funneling and chemical catalysis, Proc. Natl. Acad. Sci., 111, 12013, 10.1073/pnas.1410657111 Meyer, 2018, Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste, Biomass Bioenergy, 119, 446, 10.1016/j.biombioe.2018.09.017 Mialon, 2010, Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid, Green Chem., 12, 1704, 10.1039/c0gc00150c Numata, 2015, Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii, ACS Sustain. Chem. Eng., 3, 569, 10.1021/acssuschemeng.5b00031 Pascal Schlagermann, 2012, Composition of algal oil and its potential as biofuel, J. Combust., 2012, 14 Patel, 2019, Effect of light conditions on mixotrophic cultivation of green microalgae, Bioresour. Technol., 282, 245, 10.1016/j.biortech.2019.03.024 Patrauchan, 2005, Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence, J. Bacteriol., 187, 4050, 10.1128/JB.187.12.4050-4063.2005 Ravi, 2017, Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost, Appl. Microbiol. Biotechnol., 101, 5059, 10.1007/s00253-017-8211-y Sahoo, 2018, Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis, Bioresour. Technol., 253, 252, 10.1016/j.biortech.2018.01.048 Saini, 2015, Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application, Bioresour. Technol., 188, 240, 10.1016/j.biortech.2015.01.048 Singhania, 2015, An integrative process for bio-ethanol production employing SSF produced cellulase without extraction, Biochem. Eng. J., 102, 45, 10.1016/j.bej.2015.01.002 Talebi, 2014, BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel, Biofuel. Res. J., 1, 55, 10.18331/BRJ2015.1.2.4 Wang, 2019, From lignin to valuable products–strategies, challenges, and prospects, Bioresour. Technol., 271, 449, 10.1016/j.biortech.2018.09.072 Wang, 2018, Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield, Ind. Crops. Prod., 116, 116, 10.1016/j.indcrop.2018.02.043 Wei, 2015, Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069, Green Chem., 17, 2784, 10.1039/C5GC00422E Wells, 2015, Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069, Biomass Bioenergy, 72, 200, 10.1016/j.biombioe.2014.11.004 Weng, 2008, Independent origins of syringyl lignin in vascular plants, Proc. Natl. Acad. Sci., 105, 7887, 10.1073/pnas.0801696105 Yee, 2012, Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach, Biotechnol. Biofuels, 5, 10.1186/1754-6834-5-81 Zhang, 2014, Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus, Microb. Cell. Fact., 13, 62, 10.1186/1475-2859-13-62