Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01
Tài liệu tham khảo
Abraham, 2016, Potential of rice straw for bio-refining: an overview, Bioresour. Technol., 215, 29, 10.1016/j.biortech.2016.04.011
Aleixandre-Tudo, 2017, Spectrophotometric analysis of phenolic compounds in grapes and wines, J. Agric. Food. Chem., 65, 4009, 10.1021/acs.jafc.7b01724
Atabani, 2012, A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew. Sustain. Energy Rev., 16, 2070, 10.1016/j.rser.2012.01.003
Awasthi, 2019, Production of phenolic compounds using waste coir pith: estimation of kinetic and thermodynamic parameters, Bioresour. Technol., 274, 173, 10.1016/j.biortech.2018.11.073
Bhatia, 2015, Development of semi-synthetic microbial consortia of Streptomyces coelicolor for increased production of biodiesel (fatty acid methyl esters), Fuel, 159, 189, 10.1016/j.fuel.2015.06.084
Bhatia, 2016, Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production, 3 Biotech, 6, 223, 10.1007/s13205-016-0539-y
Bhatia, 2016, Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source, Bioresour. Technol., 217, 141, 10.1016/j.biortech.2016.02.055
Bhatia, 2017, Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01, Bioresour. Technol., 233, 99, 10.1016/j.biortech.2017.02.061
Bhatia, 2017, Current status and strategies for second generation biofuel production using microbial systems, Energy Convers. Manage., 148, 1142, 10.1016/j.enconman.2017.06.073
Bhatia, 2017, An overview of microdiesel—a sustainable future source of renewable energy, Renew. Sustain. Energy Rev., 79, 1078, 10.1016/j.rser.2017.05.138
Bhatia, 2018, Biowaste-to-bioenergy using biological methods–a mini-review, Energy Convers. Manage., 177, 640, 10.1016/j.enconman.2018.09.090
Bhatia, 2018, Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119, Bioresour. Technol., 271, 306, 10.1016/j.biortech.2018.09.122
Bhatia, 2019, Effect of synthetic and food waste-derived volatile fatty acids on lipid accumulation in Rhodococcus sp. YHY01 and the properties of produced biodiesel, Energy Convers. Manage., 192, 385, 10.1016/j.enconman.2019.03.081
Bhatia, 2019, A clean and green approach for odd chain fatty acids production in Rhodococcus sp. YHY01 by medium engineering, Bioresour. Technol., 286, 27, 10.1016/j.biortech.2019.121383
Bhatia, 2019, Carbon dioxide capture and bioenergy production using biological system – a review, Renew. Sustain. Energy Rev., 110, 143, 10.1016/j.rser.2019.04.070
Brzonova, 2017, Fungal biotransformation of insoluble Kraft lignin into a water soluble polymer, Ind. Eng. Chem. Res., 56, 6103, 10.1021/acs.iecr.6b04822
Cao, 2018, Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects, Bioresour. Technol., 269, 465, 10.1016/j.biortech.2018.08.065
Das, 2018, Lignin conversion to low-molecular-weight aromatics via an aerobic oxidation-hydrolysis sequence: comparison of different lignin sources, ACS Sustain. Chem. Eng., 6, 3367, 10.1021/acssuschemeng.7b03541
Flores-Gómez, 2018, Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery, Biotechnol. Biofuels, 11, 7, 10.1186/s13068-017-0995-6
Hazeena, 2019, Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol, Bioresour. Technol., 278, 145, 10.1016/j.biortech.2019.01.042
He, 2017, Lipid production from dilute alkali corn stover lignin by Rhodococcus strains, ACS Sustain. Chem. Eng., 5, 2302, 10.1021/acssuschemeng.6b02627
Kosa, 2012, Bioconversion of lignin model compounds with oleaginous Rhodococci, Appl. Microbiol. Biotechnol., 93, 891, 10.1007/s00253-011-3743-z
Kumar, 2017, Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp ISTKB, ACS Omega, 2, 9156, 10.1021/acsomega.7b01615
Kurosawa, 2013, Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production, Biotechnol. Biofuels, 6, 1754, 10.1186/1754-6834-6-134
Kurosawa, 2014, Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels, J. Microb. Biochem. Technol., 6, 254, 10.4172/1948-5948.1000153
Kurosawa, 2015, Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors, Biotechnol. Biofuels, 8, 76, 10.1186/s13068-015-0258-3
Le, 2017, Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci, RSC Adv., 7, 4108, 10.1039/C6RA28033A
Li, 2019, Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains, Biotechnol. Biofuels, 12, 60, 10.1186/s13068-019-1395-x
Linger, 2014, Lignin valorization through integrated biological funneling and chemical catalysis, Proc. Natl. Acad. Sci., 111, 12013, 10.1073/pnas.1410657111
Meyer, 2018, Isolation of lignin from Ammonia Fiber Expansion (AFEX) pretreated biorefinery waste, Biomass Bioenergy, 119, 446, 10.1016/j.biombioe.2018.09.017
Mialon, 2010, Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid, Green Chem., 12, 1704, 10.1039/c0gc00150c
Numata, 2015, Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii, ACS Sustain. Chem. Eng., 3, 569, 10.1021/acssuschemeng.5b00031
Pascal Schlagermann, 2012, Composition of algal oil and its potential as biofuel, J. Combust., 2012, 14
Patel, 2019, Effect of light conditions on mixotrophic cultivation of green microalgae, Bioresour. Technol., 282, 245, 10.1016/j.biortech.2019.03.024
Patrauchan, 2005, Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence, J. Bacteriol., 187, 4050, 10.1128/JB.187.12.4050-4063.2005
Ravi, 2017, Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost, Appl. Microbiol. Biotechnol., 101, 5059, 10.1007/s00253-017-8211-y
Sahoo, 2018, Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis, Bioresour. Technol., 253, 252, 10.1016/j.biortech.2018.01.048
Saini, 2015, Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application, Bioresour. Technol., 188, 240, 10.1016/j.biortech.2015.01.048
Singhania, 2015, An integrative process for bio-ethanol production employing SSF produced cellulase without extraction, Biochem. Eng. J., 102, 45, 10.1016/j.bej.2015.01.002
Talebi, 2014, BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel, Biofuel. Res. J., 1, 55, 10.18331/BRJ2015.1.2.4
Wang, 2019, From lignin to valuable products–strategies, challenges, and prospects, Bioresour. Technol., 271, 449, 10.1016/j.biortech.2018.09.072
Wang, 2018, Production of vanillin from lignin: the relationship between β-O-4 linkages and vanillin yield, Ind. Crops. Prod., 116, 116, 10.1016/j.indcrop.2018.02.043
Wei, 2015, Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069, Green Chem., 17, 2784, 10.1039/C5GC00422E
Wells, 2015, Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069, Biomass Bioenergy, 72, 200, 10.1016/j.biombioe.2014.11.004
Weng, 2008, Independent origins of syringyl lignin in vascular plants, Proc. Natl. Acad. Sci., 105, 7887, 10.1073/pnas.0801696105
Yee, 2012, Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach, Biotechnol. Biofuels, 5, 10.1186/1754-6834-5-81
Zhang, 2014, Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus, Microb. Cell. Fact., 13, 62, 10.1186/1475-2859-13-62