Continuous data dependence, regularization, and a three lines theorem for the heat equation with data in a space like direction
Tóm tắt
Let u(¦x¦, t) (for x∈RN, t>0) be a radially symmetric solution of the heat equation which satisfies u(¦x¦, 0)=0 for ¦x¦⩾R (or 0<¦x¦⩽R) and which is L2 in time. Then there is a constant A=A(N) such that if 00. Our results extend, simplify, and in the case N=1, sharpen the results of Carasso, who studied the one dimensional problem. (SIAM J. Appl. Math.,24 (1982).)Similar results are also obtained for certain second order elliptic boundary value problems in unbounded domains. An analog of the three lines theorem is an easy consequence of these results.
Tài liệu tham khảo
S.Agmon,Unicité et Convexité dans des Problèmes Differentiels, Sem. de Math. Sup. Univ. of Montreal, 1965.
J. R. Cannon,A priori estimates for continuation of the solution of the heat equation in the space variable, Ann. di Math.,65 (1964), pp. 377–388.
A. Carasso,Determining surface temperatures from interior observations, SIAM J. Appl. Math.,42 (1982), pp. 558–574.
N. Dunford -J. T. Schwartz,Linear Operators, Part I, Interscience, New York, 1957.
H. Dym -H. P. McKean,Fourier Series and Integrals, Academic Press, New York, N.Y., 1972.
Handbook of Mathematical Functions, Abromowitz and Stegun eds., Dover, N.Y., 1965.
L. E. Payne,Improperly posed problems in partial differential equations, CBMS Regional Conf. Ser. 22, SIAM Publication, Philadelphia, 1975.
A. M. Tikhonov -V. Y. Arsenin,Solutions of Ill Posed Problems, English Ed. Winston-Wiley, Washington, 1977.
G. M. Watson,A Treatise on the Theory of Bessel Functions, Comb. U. Press, Cambridge, 1966.
J. R. Cannon,A Cauchy problem for the heat equation, Ann. Mat. Pura Appl.,66 (1964), pp. 155–166.
J. R. Cannon -R. E. Klein, J. Dyn. Sys. Meas. & Control,93 (1971), pp. 193–199.
J. R.Cannon - R.Ewing,A direct numerical procedure for the Cauchy problem for the heat equation, J. Math. Anal. Appl.,56 (1976).
G. Talenti -S. Vessella,A note on an ill posed problem for the heat equation, J. Aust. Math. Soc. (Ser. A),32 (1982), pp. 358–368.